网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
6082铝合金上摆臂件成形工艺初探
英文标题:Preliminary study on forming process of upper swing arm for 6082 aluminum alloy
作者:孙田田 郑俊涛 庄晓伟 王梁 胡成亮 赵震 
单位:上海交通大学 江苏龙城精锻有限公司 
关键词:6082铝合金 热压缩 粗晶现象 上摆臂件 混晶 
分类号:TG316
出版年,卷(期):页码:2019,44(8):66-70
摘要:

 针对6082铝合金热锻时形成粗晶并影响锻件性能的问题,通过对坯料进行加热保温,对未变形与变形条件下的晶粒粗化进行研究,定量分析坯料表面粗晶层厚度,探讨加热温度与保温时间、热变形条件对6082铝合金粗晶现象的影响规律。得出结论:保温时间超过25 min后,粗晶层会迅速扩大;同时,在变形量为0.7、变形温度为350~500 ℃区间、变形速率为0.1~5 s-1条件下对试样进行压缩,并利用EBSD图像观察晶粒尺寸,发现均存在混晶现象,大应变速率下采用高变形温度有利于改善混晶。在此基础上,初步制定3种汽车上摆臂件的成形工艺方案,发现加热至540 ℃预锻并经二次加热再终锻这一方案有利于减小锻件粗晶层厚度。

 For the problem of formation of coarse grains in hot forging and affecting the properties of 6082 aluminum alloy forgings, the grain coarsening tests under undeformed and deformed conditions were implemented by heating and holding for blank. Then, the thickness of coarse grain layer on the surface of blank was quantitatively analyzed, and the influences of heating temperature, holding time and thermal deformation conditions on coarse grain phenomenon of 6082 aluminum alloy were discussed. The results show that the coarse grain layer expands rapidly when the holding time exceeds 25 minutes. Under the deformation of 0.7, deformation temperature of 350-450 ℃ and the deformation rate of 0.1-5 s-1, the sample was compressed, and the grain size was observed by EBSD image. It is found that there are mixed crystals, and the high deformation temperature at large strain rate is beneficial to weaken the mixed crystals. According to the conclusion, three forming process schemes of automobile upper swing arm were initially worked out, and the scheme of heating the material to 540 ℃ for pre-forging and reheating to the same temperature for finish-forging is more reasonable to reduce the thickness of coarse grain layer of forgings.

基金项目:
作者简介:
作者简介:孙田田(1992-),女,硕士研究生 E-mail:tiantian_sun@sjtu.edu.cn 通讯作者:赵 震(1972-),男,博士,教授 E-mail:zzhao@sjtu.edu.cn
参考文献:

[1]   汪文芳, 孙成武. 汽车铝合金开发与应用[J]. 汽车实用技术, 2018, (18):258-259.


Wang W F, Sun C W. Development and application of automobile aluminum alloy[J]. Automobile Applied Technology, 2018, (18):258-259.


[2]   Hirsch J, AlSamman T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications[J]. Acta Materialia, 2013, 61(3):818-843.


[3]   Lee S L, Lee D C, Lee J I, et al. Integrated process for structuraltopological configuration design of weightreduced vehicle components[J]. Finite Elements in Analysis and Design, 2007, 43(8):620-629.


[4]   张胜华, 覃业霞. 铝合金挤压制品粗晶环形成机理研究[J]. 铝加工, 2001, 24(2):16-20.


Zhang S H, Qin Y X. Study on the coarsegrain forming mechanisms in extruded aluminum alloy products[J]. Aluminum Fabrication, 2001, 24(2):16-20.


[5]  周令德. 5A06铝合金挤压制品退火过程中粗晶环形成机理探讨[J]. 铝加工, 2016, (1):30-36.


Zhou L D. Formation mechanism of coarsegrain ring of extrusion products for 5A06 aluminum alloy during annealing [J]. Aluminum Fabrication, 2016, (1):30-36.


[6]   李延军, 陈念东, 刘建生, . 单孔模挤压6082铝合金棒材粗晶问题的研究[J]. 铝加工, 2018, (2):17-21.


Li Y J, Chen N D, Liu J S, et al. Research on the problem of coarse grain on extruding bar of 6082 aluminum alloy by singlehole mold [J]. Aluminum Fabrication, 2018, (2):17-21.


[7]   李炜炜, 张金虹. 6系铝合金的挤压粗晶环[J]. 上海有色金属, 2012, 33(1):16-19.


Li W W, Zhang J H. Extrusion 6 series aluminum alloy with peripheral coarse grain[J]. Shanghai Nonferrous Metals, 2012, 33(1):16-19.


[8]   Eivani A R, Zhou J. Application of physical and numerical simulations for interpretation of peripheral coarse grain structure during hot extrusion of AA7020 aluminum alloy[J]. Journal of Alloys and Compounds, 2017, 725:41-53.


[9]   Hu H E, Zhen L, Chen J Z, et al. Microstructure evolution in hot deformation of 7050 aluminum alloy with coarse elongated grains[J]. Materials Science and Technology, 2008, 24(3):281-286.


[10]李雪松, 陈军, 张鸿冰. 6082铝合金热变形的本构模型[J]. 中国有色金属学报, 2008, 18(10):1769-1774.


Li X S, Chen J, Zhang H B. Constitutive model for hot deformation of 6082 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(10):1769-1774.


[11]Shi H, Mclaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Metal Science Journal, 1997, 13:210-216.


[12]李柏茹, 孙俭峰, 陈洪玉. 2618铝合金等温成型工艺中粗晶问题的研究[J]. 黑龙江科技学院学报, 2003, 13(3):25-27.


Li B R, Sun J F, Chen H Y. Research on coarsegrained problem of 2618 aluminum alloy in isothermal forming production techniques[J]. Journal of Heilongjiang Institute of Science and Technology, 2003, 13(3):25-27.


[13]刘维坊. 锻造工艺参数对6082铝合金组织演变影响规律的研究[D].北京:机械科学研究总院, 2016.


Liu W F. Research on the Influence of Forging Process Parameters on Microstructure Evolution of 6082 Aluminum Alloy[D]. Beijing: China Academy of Machinery Science & Technology, 2016.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9