网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
316LN钢亚动态再结晶行为
英文标题:Metadynamic recrystallization behavior of 316LN steel
作者:李景丹 刘建生 焦永星 
单位:太原科技大学 
关键词:双道次热压缩 亚动态再结晶 动力学模型 316LN钢 晶粒组织 
分类号:TG316
出版年,卷(期):页码:2019,44(8):176-181
摘要:

 采用Gleeble-1500D热模拟实验机对316LN不锈钢在变形温度为1050~1150 ℃、应变速率为0.01~1 s-1、道次间隔时间为 10~60 s条件下,进行双道次热压缩实验,研究了316LN钢的亚动态再结晶行为。实验结果表明,在所有实验条件下,该材料均发生明显的亚动态再结晶。通过金相显微组织的观察结果可知,变形温度、应变速率、道次间隔时间对晶粒组织的影响十分显著,随着变形温度的升高、应变速率的增加以及道次间隔时间的延长,材料的软化程度在不断增大,晶粒组织也更均匀。基于实验获得的双道次压缩应力-应变曲线,建立了316LN钢的亚动态再结晶动力学模型,通过模型预测值与实验值的对比可知,该模型具有较高精度。

 

 The doublepass hot compression tests were conducted by Gleeble-1500D thermal simulator under the conditions of deformation temperature of 1050-1150 ℃, strain rate of 0.01-1 s-1 and pass interval time of 10-60 s, and the meta-dynamic recrystallization behavior of 316LN stainless steel was studied. The experimental results show that the material undergoes obvious meta-dynamic recrystallization under all experimental conditions, and the influences of the deformation temperature, strain rate and pass interval time on microstructure are very significant by metallographic observations. With the increasing of deformation temperature, strain rate and pass interval time, the softening degree of material increases, and the grain structure becomes more uniform. Furthermore, based on the strainstress curves obtained from compression tests, the metadynamic recrystallization kinetics model of 316LN steel is established. Comparing with the predicted values and the experimental values, the model is of high accuracy.

 
基金项目:
山西省自然科学基金资助项目(201601D011002)
作者简介:
作者简介:李景丹(1989-),女,博士研究生 E-mail:929949477@qq.com 通讯作者:刘建生(1958-),男,博士,教授 E-mail:jiansliu@163.com
参考文献:

 [1]   潘品李, 钟约先, 马庆贤, . 核电主管道锻件锻造成形均匀性模拟研究[J]. 机械工程学报, 2013, 49(10): 97-102.


Pan P L, Zhong Y X, Ma Q X, et al. Simulation on forming uniformity of nuclear main pipe forging[J]. Journal of Mechanical Engineering, 2013, 49(10): 97-102.


[2]   张绍军, 刘钊, 赵东海, . 核电用异形锻件一体化成形工艺的仿真分析与研究[J]. 锻压技术, 2017, 42(4): 14-20.


Zhang S J, Liu Z, Zhao D H, et al. Simulation analysis and research on integral forging process of profiled forgings for nuclear power[J]. Forging & Stamping Technology, 2017, 42(4): 14-20.


[3]   Li J D, Liu J S. Strain compensation constitutive model and parameter optimization for Nbcontained 316LN[J]. Metals, 2019, 9 (2): 212.


[4]   蔺永诚, 陈明松, 钟掘. 42CrMo钢形变奥氏体的静态再结晶[J]. 中南大学学报:自然科学版, 2009, 40(2): 411-416.


Lin Y C, Chen M S, Zhong J. Static recrystallization behaviors of deformed 42CrMo steel[J]. Journal of Central South University: Science and Technology, 2009, 40(2): 411-416.


[5]   杨志强, 刘正东, 何西扣, . SA508Gr.4N钢的亚动态再结晶行为[J]. 金属热处理, 2018, 43(1): 6-11.


Yang Z Q, Liu Z D, He X K, et al. Metadynamic recrystallization behavior of SA508Gr.4N steel[J]. Heat Treatment of Metals, 2018, 43(1): 6-11.


[6]   Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel[J]. Materials Characterization, 2016, 118: 92-101.


[7]   潘品李, 钟约先, 马庆贤, . 316LN钢多道次变形条件下的动态再结晶行为[J]. 塑性工程学报, 2011, 18(5): 13-18.


Pan P L, Zhong Y X, Ma Q X, et al. Research on the dynamic recrystallization behavior of 316LN steel under multipass deformation[J]. Journal of Plasticity Engineering, 2011, 18(5): 13-18.


[8]   柏永青, 陈明明, 陈慧琴. 316LN热变形行为及动态再结晶晶粒的演变规律[J]. 太原科技大学学报, 2009, 30(5): 424-427.


Pai Y Q, Chen M M, Chen H Q. Hot deformation an dynamic recrystallization behavior of 316LN[J]. Journal of Taiyuan University of Science and Technology, 2009, 30(5): 424-427.


[9]   Yang X Y, He A, Wu C F, et al. Study of static recrystallization behavior of a nitrogenalloyed ultralow carbon austenitic stainless steel by experiment and simulation[J]. Journal of Materials Engineering and Performance, 2015, 24(11): 4346-4357.


[10]Jin M, Lu B, Liu X G, et al. Static recrystallization behavior of 316LN austenitic stainless steel[J]. Journal of Iron and Steel Research International, 2013, 20(11): 67-72.


[11]Cho S H, Kang K B, Jonas J J, et al. Effect of manganese on recrystallization kinetics of niobium microalloyed steel[J]. Materials Science and Technology, 2002, 18(3): 389- 395.


[12]Rao K P, Prasad Y K D V, Hawbolt E B. Study of fractional softening in multistage hot deformation[J]. Journal of Materials Processing Technology, 1998, 77(1-3): 166-174.


[13]Lin Y C, Li L T, Xia Y C. A new method to predict the metadynamic recrystallization behavior in 2124 aluminum alloy[J]. Computational Materials Science, 2011, 50: 2038-2043.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9