[1] Dubourg V, Sudret B, Bourinet J M. Reliabilitybased design optimization using kriging surrogates and subset simulation[J]. Structural and Multidisciplinary Optimization, 2011, 44(5): 673-690.
[2] Du X, Sudjianto A. First order saddlepoint approximation for reliability analysis[J]. AIAA journal, 2004, 42(6): 1199-1207.
[3] Zhao Y G, Ono T. A general procedure for first/secondorder reliabilitymethod (FORM/SORM)[J]. Structural Safety, 1999, 21(2): 95-112.
[4] Au S K, Beck J L. Important sampling in high dimensions[J]. Structural Safety, 2003, 25(2): 139-163.
[5] 赵劲彪, 潘玉竹, 黎定仕, 等. 发射平台摆杆机构可靠性分析[J]. 现代机械, 2018(5): 76-79.
Zhao J B, Pan Y Z, Li D S, et al. Reliability analysis of launching platform swing rod mechanism[J]. Modern Machinery, 2018(5): 76-79.
[6] 徐琦, 罗路平, 夏力. 数控机床传动机构精度可靠性优化研究[J]. 机电工程, 2018, 35(10): 1030-1035,1047.
Xu Q, Luo L P, Xia L. Optimization of precision reliability for the transmission mechanism of NC machine [J]. Journal of Mechanical & Electrical Engineering, 2018, 35(10): 1030-1035,1047.
[7] 游令非, 张建国, 翟浩, 等.模糊-随机混合参数的机构运动可靠度计算方法[J].北京航空航天大学学报,2019,45(4):714-721.
You L F, Zhang J G, Zhai H, et al. Compution method on motional reliability of mechanism under mixed parameters with fuzziness and randomness [J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(4):714-721.
[8] 刘涛. 齿轮机构的运动精度可靠性分析[D]. 成都:西华大学, 2018.
Liu T. Reliability Analysis on Kinematics Accuracy of Gear Mechanism[D]. Chengdu: Xihua University, 2018.
[9] 聂飞飞, 周金宇, 曹清林. 高速经编机槽针机构运动精度可靠性分析计算[J]. 现代制造技术与装备, 2017,(9): 33-37.
Nie F F, Zhou J Y, Cao Q L. Analysis and calculation of kinematics accuracy reliability on needle mechanism of highspeed warp knitting machine[J]. Modern Manufacturing Technology and Equipment, 2017, (9):33-37.
[10]Lu Z, Song S, Yue Z, et al. Reliability sensitivity method by line sampling[J]. Structural Safety, 2008, 30(6): 517-532.
[11]Song S, Lu Z, Qiao H. Subset simulation for structural reliability sensitivity analysis[J]. Reliability Engineering & System Safety, 2009, 94(2): 658-665.
[12]吕震宙, 李璐祎, 宋述芳, 等. 不确定性结构系统的重要性分析理论与求解方法[M]. 北京: 科学出版社, 2015.
Lyu Z Z, Li L Y, Song S F, et al. Importance Analysis Theory and Solution Method of Uncertain Structural Systems[M]. Beijing: Science Press, 2015.
[13]王文选, 高行山, 周长聪. 基于点估计的矩独立重要性测度分析方法[J]. 机械工程学报, 2017, 53(8): 16-24.
Wang W X, Gao H S, Zhou C C. Momentindependent importance measure analysis method based to pointestimate[J]. Journal of Mechanical Engineering, 2017, 53(8): 16-24.
[14]周长聪, 张峰, 王文选, 等. 随机激励下的随机结构全局灵敏度分析[J]. 高技术通讯, 2015, 25(10-11): 956-963.
Zhou C C, Zhang F, Wang W X, et al. Global sensitivity analysis for stochastic structures under random excitation [J]. Chinese High Technology Letters, 2015, 25(10-11): 956-963.
[15]刘付超, 魏鹏飞, 周长聪, 等. 含旋转铰间隙平面运动机构可靠性灵敏度分析[J]. 航空学报, 2018, 39(11): 222-230.
Liu F C, Wei P F, Zhou C C, et al. Timedependent reliability and sensitivity analysis for planar motion mechanism with revolution joint clearances[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 222-230.
[16]王鑫辉,常琮尧,杜苏睿,等. 3PRR全柔顺并联机构的水平集多目标拓扑优化设计及灵敏度分析[J].锻压技术,2018,43(1):181-188.
Wang X H,Chang Z Y,Du S R,et al. Multiobjective topology optimization design and sensitivity analysis on 3PRR fully compliance parallel mechanism based on levelset method [J]. Forging & Stamping Technology,2018,43(1):181-188.
[17]Haykin S S. Neural Networks and Iearning Machines[M]. New York: Prentice Hall, 2009.
[18]林伟路,丁小凤,双远华. BP神经网络对斜轧穿孔轧制力的预测[J].锻压技术,2018,43(10):175-178.
Lin W L,Ding X F,Shuang Y H. Prediction on rolling force of oblique rolling piercing based on BP neural network [J].Forging & Stamping Technology,2018, 43(10):175-178.
[19]张涛,樊文欣,郭代峰,等. 基于BP神经网络的温挤压模具磨损量预测[J]. 锻压技术,2017,42(2):178-182.
Zhang T,Fan W X,Guo D F,et al. Prediction on wear loss of warm extrusion die based on BP neural network [J]. Forging & Stamping Technology,2017,42(2):178-182.
[20]唐成虎, 周长聪, 侯伟, 等. 考虑性能退化的飞机典型部件灵敏度分析[J]. 西安交通大学学报,2019,53(4):158-166.
Tang C H, Zhou C C, Hou W, et al. A sensitivity analysis of typical aircraft components with performance degradation [J]. Journal of Xi′an Jiaotong University,2019, 53(4):158-166.
[21]Sobol I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1): 271-280.
|