网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
航空铆接压力成形钉头材料流动及尺寸研究
英文标题:Research on material flow and dimension of aviation nail head by viveting pressure forming
作者:曾超 田威 刘向尧 薛九天 
单位:1.贵州理工学院 航空航天工程学院 2.南京航空航天大学 机电学院 
关键词:压铆力 材料流动 钉头尺寸 主应力法 广义变分 Avitzur上限分析 
分类号:V261;TH161
出版年,卷(期):页码:2019,44(10):176-183
摘要:

 为了实现压铆力作用下钉头成形过程材料流动及尺寸的分析,利用主应力法、广义变分不等原理、Avitzur上限法以及有限元等方法,分析了铆接成形过程材料流动特征下铆接力与钉头尺寸之间的关系。结果表明,在钉头不同压缩阶段几种理论分析方法与试验结果具有不同的接近程度,其中有限元分析的效果相对更好。由于理想镦粗模型与钉头成形在材料局部流动上的差异,几种经典分析理论在铆接钉头成形尺寸的精确研究方面还不足。考虑材料大变形过程中的塑性硬化及实际流动特征,对主应力分析法进行了修正,与试验结果对比表明,修正的主应力分析法极大地提高了铆接力-钉头尺寸关系的分析精度。

In order to realize the material flow and dimension analysis of nail head forming process under the action of pressure riveting force, the relation between pressure riveting force and nail head dimension under material flow characteristics during riveting process was analyzed by principal stress method, generalized variation inequality principle, Avitzur limit analysis, FEM and so on. The results show that several theoretical analysis methods have different close proximity to the experimental results in different compression stages of nail head, and the effect of finite element analysis is relatively better. Because of the differences in local material flow characteristics between ideal upsetting model and nail head forming, several classical analysis theories are insufficient in the precise study of the forming dimensions for riveting nail head. Taking into account the plastic hardening in the large deformation process and the actual flow characteristic of material, the principal stress method was revised. The comparison with the experiment results shows that the modified principal stress method greatly improves the analysis accuracy of the riveting force-nail head dimension relationship.

基金项目:
国家自然科学基金资助项目(51575273);贵州省自然科学基金资助项目(20161065);贵州省普通高等学校工程研究中心资助项目(KY2018007);贵州理工学院军民融合专项资助项目(KJZX17-011)
作者简介:
作者简介:曾超(1986-),男,博士,副教授 E-mail:h_zeng@nuaa.edu.cn
参考文献:

 
[1]Skorupa A, Skorupa M. Riveted Lap Joints in Aircraft Fuselage: Design, Analysis and Properties
[M]. Netherlands:Springer Netherlands, 2012.


 


[2]Huang Y, Li H, Yang X, et al. Improving the fatigue life of 2297-T87 aluminum-lithium alloy lugs by cold expansion, interference fitting, and their combination
[J]. Journal of Materials Processing Technology, 2017, 249: 67-77.

 


[3]Mirzajanzadeh M, Chakherlou T N, Vogwell J. The effect of interference-fit on fretting fatigue crack initiation and ΔK of a single pinned plate in 7075 Al-alloy
[J]. Engineering Fracture Mechanics, 2011, 78(6): 1233-1246.

 


[4]Chakherlou T N, Taghizadeh H, Aghdam A B. Experimental and numerical comparison of cold expansion and interference fit methods in improving fatigue life of holed plate in double shear lap joints
[J]. Aerospace Science and Technology, 2013, 29(1): 351-362.

 


[5]Skorupa M, Machniewicz T, Skorupa A, et al. Fatigue life predictions for riveted lap joints
[J]. International Journal of Fatigue, 2017, 94: 41-57.

 


[6]Zeng C, Liao W H, Tian W. Influence of initial fit tolerance and squeeze force on the residual stress in a riveted lap joint
[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(9-12): 1643-1656.

 


[7]Skorupa M, Skorupa A, Machniewicz T, et al. Effect of production variables on the fatigue behavior of riveted lap joints
[J]. International Journal of Fatigue, 2010, 32(7): 996-1003.

 


[8]HB/Z 223.3—2003,飞机装配工艺—第3部分 普通铆接
[S].

 

HB/Z 223.3—2003, Aircraft assembling technology—Part3: Conventional riveting
[S].

 


[9]Cheraghi S H. Effect of variations in the riveting process on the quality of riveted joints
[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(11-12): 1144-1155.

 


[10]De Rijck J J M, Homan J J, Schijve J, et al. The driven rivet head dimensions as an indication of the fatigue performance of aircraft lap joints
[J]. International Journal of Fatigue, 2007, 29(12): 2208-2218.

 


[11]Li Y. An Analysis of Riveting Process by Theoretical Nonlinear Finite Element and Experimental Methods
[D]. Wichita: Wichita State University, 1998.

 


[12]Wang H L. Evaluation of Multiple Site Damage in Lap Joint Specimens
[D]. Ann Arbor: Purdue University, 1998.

 


[13]常正平,王仲奇,王斌斌,等. 基于镦头不均匀变形的压铆力建模
[J]. 航空学报, 2016, 37(7): 2312-2320.

 

Chang Z P, Wang Z Q, Wang B B, et al. Riveting force computation model based on formed head inhomogeneous deformation
[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2312-2320.

 


[14]Zhang K, Cheng H, Li Y. Riveting process modeling and simulating for deformation analysis of aircraft's thin-walled sheet-metal parts
[J]. Chinese Journal of Aeronautics, 2011, 24(3): 369-377.

 


[15]Zeng C, Tian W, Liao W H. Improved model concerning driven rivet head dimensions based on material flow characteristics
[J]. Journal of Aircraft, 2016, 53(4): 1179- 1184.

 


[16]汪乐,田威,张霖,等. 基于仿真分析的压铆力预测模型
[J]. 航空制造技术, 2017, (22): 56-60.

 

Wang L, Tian W, Zhang L, et al. Prediction model of riveting force based on simulation analysis
[J]. Aeronautical Manufacturing Technology, 2017, (22): 56-60.

 


[17]Lei C, Bi Y, Li J, et al. Experiment and numerical simulations of a slug rivet installation process based on different modeling methods
[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97 (1): 1481-1496.

 


[18]De Matos P F P, MoreirA P M G P, Camanho P P, et al. Numerical simulation of cold working of rivet holes
[J]. Finite Elements in Analysis and Design, 2005, 41(9-10): 989-1007.

 


[19]Blanchot V, Daidie A. Riveted assembly modelling: Study and numerical characterization of a riveting process
[J]. Journal of Materials Processing Technology, 2006, 180(1-3): 201-209.

 


[20]Li G, Shi G, Bellinger N C. Studies of residual stress in single-row countersunk riveted lap joints
[J]. Journal of Aircraft, 2006, 43(3): 592-599.

 


[21]汪大年. 金属塑性成形原理
[M]. 北京: 机械工业出版社, 1986.

 

Wang D N. Fundamental of Metal Plastic Forming
[M]. Beijing: China Machine Press, 1986.

 


[22]孙辉,扶名福,杨国泰. 摩擦约束有限变形弹塑性广义变分不等原理
[J]. 机械工程学报, 2005, 41 (3): 38-41,46.

 

Sun H, Fu M F, Yang G T. Generalized variation inequality principle of rate form in elastio-plastic contact problem with finite displacement and friction
[J]. Chinese Journal of Mechanical Engineering, 2005, 41 (3): 38-41,46.

 


[23]孙辉,扶名福. 带摩擦的弹性接触问题广义变分不等原理的简化证明
[J]. 数学的实践与认识, 2003, 33 (3): 75-78.

 

Sun H, Fu M F. On the generalized inequalities in elastic contact problem by the use of simple method
[J]. Mathematics in Practice and Theory, 2003, 33 (3): 75-78.

 


[24]Avitzur B. Metal forming: The application of limit analysis
[J]. Annual Review of Materials Science, 1977, 7(1):261-300.

 


[25]Atre A, Johnson W S. Analysis of the effects of interference and sealant on riveted lap joints
[J]. Journal of Aircraft, 2007, 44(2): 353-364.

 


[26]Rans C, Straznicky P V, Alderliesten R. Riveting process induced residual stresses around solid rivets in mechanical joints
[J]. Journal of Aircraft, 2007, 44(1): 323-329.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9