网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高强建筑用低温钢的高温变形行为
英文标题:High temperature deformation behavior of low temperature steel for high strength building
作者:焦丽君 张书娜 何宇 罗凤鸣 
单位:1.邢台职业技术学院 建筑工程系 2.河钢集团唐钢公司 技术中心 
关键词:低温钢 高温变形 显微组织 本构方程 动态再结晶 
分类号:TG454
出版年,卷(期):页码:2019,44(10):184-190
摘要:

采用Gleeble 3800热模拟试验机,对高强低温建筑用钢在850~1200 ℃时进行了热压缩变形,分析了低温钢的高温组织演变和动态再结晶行为,建立了低温钢的高温压缩本构方程。结果表明,变形温度850~1200 ℃时低温钢的应力-应变曲线中都没有明显流变应力峰值,且随着变形温度升高,相同应变下低温钢的流变应力呈现逐渐减小,具有动态回复的流变曲线特征;随着变形温度的增加,低温钢中长条状奥氏体晶粒逐渐转化为细小等轴晶,在变形温度高于1100 ℃时低温钢中等轴晶晶粒会发生粗化与长大;低温钢的高温变形本构方程可表示为:Z=4exp(341970/RT)=7.8073σ7.9751p。随着变形温度从850 ℃上升至1000 ℃,低温钢中纳米级V(C,N)相尺寸不断增大、数量不断减少,纳米级V(C,N)相可以有效抑制低温钢中动态再结晶的发生。

The hot compression deformation of steels used by low temperature and high strength building was conducted at 850-1200 ℃ by Gleeble 3800 thermal simulator, the evolution of high temperature structure and dynamic recrystallization behavior of low temperature steels were analyzed, and the constitutive equation of high temperature compression for low temperature steels was established. The results show that there is no obvious peak value of rheological stress in the stress-strain curves of low temperature steel at the deformation temperature of 850-1200 ℃. With the increase of deformation temperature, the rheological stress of low temperature steel under the same strain decreases gradually, and it has the characteristics of dynamic recovery rheological curve. However, with the increase of deformation temperature, the long austenite grains in low temperature steel gradually transform into fine equiaxed grains, and the coarsening and growth of 
equiaxed grains occur when the deformation temperature is higher than 1100 ℃. Therefore, the constitutive equation of high-temperature deformation for low temperature steels can be expressed as follows: Z=4exp(341970/RT)=7.8073σ7.9751p. Thus, with the increase of deformation temperature from 850 ℃ to 1000 ℃, the size of nano-V(C, N) phase in low temperature steel increases, the number of nano-V(C, N) phase decreases, and nano-V (C, N) phase can effectively inhibit the occurrence of dynamic recrystallization in low temperature steel.
基金项目:
国家自然科学基金资助项目(51234012)
作者简介:
作者简介:焦丽君(1986-),女,硕士,讲师 E-mail:lijunjiaoo48@sina.com
参考文献:

 
[1]赵宏禹,刘荣佩,王长军,等. QLT与QT热处理工艺对9Ni低温钢性能的影响
[J].金属热处理, 2018, 43(12): 100-104.


 

Zhao H Y, Liu R P, Wang C J, et al. Effect of QLT and QT heat treatment process on properties of 9Ni low temperature steel
[J]. Heat Treatment of Metals, 2018, 43 (12): 100-104.

 


[2]Saadatkia S, Mirzadeh H, Cabrera J M. Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels
[J]. Materials Science and Engineering: A, 2015, 636(5): 196-202.

 


[3]董方,宿成,张寄东. Q345B结构钢的热压缩变形行为及流变应力模型
[J]. 钢铁,2011, 46(9):59-63.

 

Dong F, Su C, Zhang J D. Hot compression deformation behavior and rheological stress model of Q345B structural steel
[J]. Iron and Steel, 2011, 46 (9): 59-63.

 


[4]张龙,王东城,马晓宝,等. 30Cr2Ni2Mo合金钢高温流变应力模型
[J]. 塑性工程学报, 2017,24(4): 144-149.

 

Zhang L, Wang D C, Ma X B, et al. High temperature rheological stress model of 30Cr2Ni2Mo alloy steel
[J]. Journal of Plastic Engineering, 2017, 24 (4): 144-149.

 


[5]Yand J H, Liu Q Y, Sun D B. Recrystallization behavior of deformed austenite in high strength micro alloyed pipeline steel
[J]. Journal of Iron and Steel Research: International, 2009, 16(1):70-80.

 


[6]She Y, Zhang Z H, Yang J, et al. The dynamic recrystallization of hot-deformed austenite in a micro-alloyed steel
[J]. Materials Science Forum, 2012, 724(5):4-6.

 


[7]Hu C L, Zhang Y, Zhao Z, et al. Effect of processing parameters on the hot compressive deformation behavior of 20CrMnTiH
[J]. Advanced Materials Research, 2011, 399-401:1693-1696.

 


[8]Kunitskaya I N, Spektor Y I, Olshanetskii V E. Structural and kinetic features of dynamic recrystallization of alloyed austenite upon multipass hot deformation
[J]. Metal Science and Heat Treatment, 2012, 53(9-10):498-502.

 


[9]马世博,侯瑞东,张双杰,等.低碳合金钢高温本构方程及动态再结晶行为研究
[J]. 塑性工程学报, 2018, 25(4): 158-166.

 

Ma S B, Hou R D, Zhang S J, et al. Study on constitutive equation and dynamic recrystallization behavior of low carbon alloy steel at high temperature
[J]. Journal of Plastic Engineering, 2018, 25 (4): 158-166.

 


[10]Li X, Song R B, Kang T, et al. Hot deformation and dynamic recrystallization behavior of Fe-8Mn-6Al-0.2C steel
[J]. Materials Science Forum, 2017, 898(5):797-802.

 


[11]Gu S, Zhang L, Zhang C, et al. Modeling the effects of processing parameters on dynamic recrystallization behavior of deformed 38MnVS6 steel
[J]. Journal of Materials Engineering and Performance, 2015, 24(5): 1790-1798.

 


[12]王伟, 马世博, 张双杰, 等. 20Cr2Ni4A钢高温变形行为及物理基参数本构模型
[J]. 塑性工程学报, 2018, 25(6): 147-153.

 

Wang W, Ma S B, Zhang S J, et al. Constitutive model of high temperature deformation behavior and physical basic parameters of 20Cr2Ni4A steel
[J]. Journal of Plastic Engineering, 2018, 25 (6): 147-153.

 


[13]Xu L X, Wu H B, Wang X T. Influence of microstructural evolution on the hot deformation behavior of an Fe-Mn-Al duplex lightweight steel
[J]. Acta Metallurgica Sinica: English Letters, 2018, 31(4):389-400.

 


[14]张静, 蒋春霞, 乔帮威. 14Cr17Ni2钢高温变形行为及本构方程的研究
[J]. 热加工工艺, 2018, 47(14): 38-43.

 

Zhang J, Jiang C X, Qiao B W. Study on high temperature deformation behavior and constitutive equation of 14Cr17Ni2 steel
[J]. Hot Working Technology, 2018, 47 (14): 38-43.

 


[15]Dutta B, Palmiere E J, Sellars C M. Modelling the kinetics of strain induced precipitation in Nb micro alloyed steels
[J]. Acta Materialia, 2001, 49(5): 785-794.

 


[16]Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C steel
[J]. Acta Metallurgica Sinica: English Letters, 2016, 29(5):1-9.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9