网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
5083P-O铝合金板材腐蚀疲劳性能研究
英文标题:Research on corrosion fatigue performances of 5083P-O aluminium alloy sheet
作者:马立勇 石树正 孙晓红 贾雅静 刘勇 宋明星 
单位:河北建筑工程学院 北京航空航天大学 中车青岛四方机车车辆股份有限公司 张家口卷烟厂有限责任公司 安徽埃克索医疗机器人有限公司 
关键词:5083P-O铝合金 腐蚀疲劳 S-N曲线 腐蚀坑 微观组织 
分类号:TG115.57
出版年,卷(期):页码:2019,44(9):141-145
摘要:

以5083P-O铝合金板材为研究对象,对5083P-O铝合金板材在20~25 ℃的3.5% NaCl溶液中进行腐蚀疲劳试验, 得到横向和纵向106循环下的腐蚀疲劳性能,并对试验数据进行数据处理,采用最小二乘法拟合,最终得到5083P-O铝合金板材横向和纵向腐蚀疲劳S-N曲线。横向与纵向S-N曲线表明,板材纵向腐蚀疲劳极限高于横向腐蚀疲劳极限。借助SEM扫描电镜分析断裂腐蚀疲劳断口微观组织,结果表明,引起铝合金板材腐蚀疲劳断裂的原因为:腐蚀液对5083P-O铝合金试样表面造成化学腐蚀,产生腐蚀坑,腐蚀疲劳裂纹从金属表面点蚀坑生成,进而经历扩展及快速扩展阶段,直至断裂。

For 5083P-O aluminum alloy sheet, the corrosion fatigue test of 5083P-O aluminum alloy sheet in 3.5% NaCl solution at 20-25 ℃was conducted, and the corrosion fatigue performances in the transverse and longitudinal directions with 106 cycles were obtained respectively. Then, the test data were processed and fitted by the least square method,and finally the S-N curves of transverse and longitudinal corrosion fatigue for 5083P-O aluminium alloy sheet were obtained. However, the transverse and longitudinal S-N curves indicate that the longitudinal corrosion fatigue limit of sheet is higher than the transverse corrosion fatigue limit. Furthermore, the microstructure of fatigue fracture was analyzed by SEM. The results show that the cause of corrosion fatigue fracture of aluminum alloy sheet is that the corrosive solution causes chemical corrosion on the surface of 5083P-O aluminum alloy specimen resulting in corrosion pits,the corrosion fatigue cracks are generated from the pits on metal surface, and then undergo expansion and rapid expansion until fracture.

基金项目:
国家自然科学基金资助项目(51375500);河北省自然科学基金资助项目(F201904029);河北省高等学校科学技术研究青年基金项目(QN2018013,QN2019208); 2017年河北省省级科技计划自筹经费项目(17211828);2018年度张家口市科技计划财政资助项目(1811009B-10);2018年度张家口市科技计划财政资助项目(1811009B-12);河北建筑工程学院教师发展专项(2018SJ1002);河北建筑工程学院教学改革研究项目(2018JY0005)
作者简介:
马立勇(1987-),男,硕士,讲师 E-mail:maliyongmail@foxmail.com 通讯作者:宋明星(1983-),男,硕士,讲师 E-mail:113711081@csu.edu.cn
参考文献:


[1]Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry
[J]. Materials Science and Engineering: A, 2000, 280(1):37-49.



[2]杨联萍,邱枕戈. 铝合金结构在上海地区的应用
[J]. 建筑钢结构进展, 2008,10(1):53-57.


Yang L P, Qiu Z G.Application of aluminum alloy structures in Shanghai.
[J]. Progress in Steel Building Structures, 2008,10(1):53-57.



[3]Srivatsan T S, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524
[J]. Materials & Design, 2002, 23(2): 129-139.



[4]徐雪峰. 5083铝合金力学性能及超塑性成型数值模拟与实验研究
[D]. 南京:南京航空航天大学,2009.


Xu X F. Research on Mechanical Behavior and Simulation and Experiment of Superplastic Forming of 5083 Aluminum Alloy
[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009.



[5]马立勇, 颜景润,张永清,等.基于灰色系统理论的7075铝合金板材疲劳寿命研究
[J].锻压技术,2017,42(7):173-176.


Ma L Y, Yan J R, Zhang Y Q,et al.Study on fatigue life of aluminum alloy 7075 sheet based on grey system theory
[J]. Forging & Stamping Technology, 2017, 42 (7): 173-176.



[6]刘义伦,何军,刘驰,等.2524铝合金不同应力比下的疲劳裂纹扩展行为
[J].锻压技术,2018,43(6):134-141.


Liu Y L, He J, Liu C,et al. Fatigue crack growth of aluminum alloy 2524 under different stress ratios
[J]. Forging & Stamping Technology, 2018, 43(6):134-141.



[7]Yin D, Liu H, Chen Y,et al. Effect of grain size on fatigue-crack growth in 2524 aluminium alloy
[J]. International Journal of Fatigue, 2016, 84:9-16.



[8]郝清伟, 康凤娣, 邵忠财, 等. 铝及其合金表面改性技术的进展
[J]. 有色矿冶, 2004, 20(6):30-33.


Hao Q W, Kang F D, Shao Z C, et al. Search on surface treatment technology of aluminum and its alloys
[J]. Non-ferrous Mining and Metallurgy, 2004, 20(6): 30-33.



[9]Liu C, Liu Y, Li S, et al. Effect of creep aging forming on the fatigue crack growth of an AA2524 alloy
[J]. Materials Science and Engineering: A, 2018, 725:375-381.



[10]Ringer S P, Polmear I J, Sakurai T. Effect of additions of Si and Ag to ternary Al-Cu-Mg alloys in the α+S phase field
[J]. Materials Science and Engineering: A, 1996, 217: 273-276.



[11]Shen F, Wang B, Yi D, et al. Effects of heating rate during solid-solution treatment on microstructure and fatigue properties of AA2524 T3 Al-Cu-Mg sheet
[J]. Materials & Design, 2016, 104: 116-125.



[12]Ringer S P, Sakurai T, Polmear I J. Origins of hardening in aged Al-Cu-Mg-(Ag) alloys
[J]. Acta Materialia, 1997, 45(9): 3731-3744.



[13]GB/T 20120.1—2006,金属和合金的腐蚀腐蚀疲劳试验第1部分:循环失效试验
[S].


GB/T 20120.1—2006,Corrosion of metals and alloys—Corrosion fatigue testing—Part 1:Cycles to failure testing
[S].



[14]GB/T 24176—2009,金属材料疲劳试验数据统计方案与分析方法
[S].


GB/T 24176—2009,Metallic materials—Fatigue testing—Statistical planning and analysis of data
[S].

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9