网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
方盒形件拉深成形变压边力加载规律优化
英文标题:Optimization on loading law of variable blank-holder force in deep drawing of square box
作者:张效林 李奇涵 
单位:广东大冶摩托车技术有限公司 长春工业大学 
关键词:方盒形件 变压边力 拉深成形 加载模式 智能预测 
分类号:TH16;TG386
出版年,卷(期):页码:2019,44(11):68-74
摘要:
选择方盒形非轴对称件为模拟研究对象,分析了方盒形件拉深成形的工艺特点和常见的失效形式及判定标准,通过专业CAE分析软件DYNAFORM,研究分析了方盒形件在不同典型压边力加载模式下的拉深成形性能和极限拉深比(LDR),确定了V型或者类似于V型的变压边力加载状态下坯料的成形效果和LDR最优。建立了方盒形件成形过程中变压边力加载规律的径向基(RBF)神经网络智能预测模型,并完成预测模型的训练和性能检验,对比发现预测结果与模拟结果吻合较好,而且RBF神经网络预测变压边力加载时板料拉深成形质量更好,也更趋近实际生产状态。最后对神经网络预测结果进行多项式拟合优化,获得了成形效果较为理想的变压边力加载曲线。
For square box parts of non-axisymmetry, the process characteristics and common failure modes as well as judgment criteria in deep drawing of square box parts were analyzed. Then, the deep drawing performance and the limit drawing ratio (LDR) of square box parts under different loading modes of typical variable blank holder force (VBHF) were studied and analyzed by the professional CAE simulation software DYNAFORM, and the best forming effect and LDR of blank under the V-type or similar V-type of VBHF loading were confirmed. Furthermore, the RBF neural network intelligent forecasting model of VBHF loading law in the deep forming process of square box parts was established, and the training and performance test of the forecast model were completed. The predicted results are in good agreement with the simulation results, and the RBF neural network predictes that the sheet drawing quality with VBHF loading is better and closer to the actual production state. Finally, the neural network prediction results were optimized by the polynomial fitting, and the VBHF loading curve with ideal forming effect was obtained.
基金项目:
吉林省省级经济结构战略调整引导资金专项项目(20141131)
作者简介:
张效林(1988-),男,硕士,E-mail:xiaolin8888@163.com
参考文献:
[1]Hirose Y, Kojima M, Ujihara S, et al. Development of forming technique with real-time control of blank holding force[A]. Proceedings of the 17th Biennial Congress of the IDDRG [C]. Olofstrm, Sweden, 1992.
[2]Murata A, Matsui M.Effects of control of local blank-holding forces on deep draw ability of square sheet[A]. Proceedings of the 18th Biennial Congress IDDRG[C]. Lisbon, Portugal,1994.
[3]孙成智,陈关龙, 李淑惠, 等.变压边力对矩形件成形性能的影响[J].塑性工程学报,2003, 10(4):6-9.
Sun C Z, Chen G L, Li S H, et al.The effect of variable blank-holder forces on formability of ractangle box deep drawing [J].Journal of Plasticity Engineering,2003, 10(4):6-9.
[4]邢楠.盒形件变压边力成形控制系统的研究[D].西安:西北工业大学, 2005.
Xing N. Research on Variable Blank Holder Force Forming Control System for Box Shaped Parts[D].Xi′an: Northwestern Polytechnical University,2005.
[5]张效林.金属板料拉深成形变压边力加载曲线优化研究[D].长春:长春工业大学,2015.
Zhang X L.Study on Optimization of Loading Curves of Variable Blank-holder Force in Metal Sheet Deep Drawing [D]. Changchun: Changchun University of Technology,2015.
[6]胡轶敏,张为刚,林忠钦,等.坯料形状对盒形件拉深成形性能的影响[J].上海汽车,1997,(11):1-4.
Hu Y M, Zhang W G, Hu Z Q, et al.Effect of blank shape on the deep drawing performance of square cups [J].Shanghai Auto,1997,(11):1-4.
[7]李奇涵,张效林,王文广,等.方盒形件拉深变压边力加载研究[J].机械设计与制造, 2014,(10):233-235,239.
Li Q H, Zhang X L, Wang W G, et al.Simulation study on variable blank-holder force curves in square box deep drawing process [J].Machinery Design & Manufacture, 2014,(10):233-235,239.
[8]王风琴.盒形件拉深智能化控制关键技术的研究[D].秦皇岛:燕山大学,2003.
Wang F Q. Research on the Key Technologies of Intelligent Deep Drawing Control for a Rectangular Box [D]. Qinhuangdao: Yanshan University, 2003.
[9]Eric T Harpell, Michael J Worswick, Mark Finn, et al. Numerical prediction of the limiting draw ratio for aluminum alloy sheet[J]. Journal of Materials Processing Technology 2000,100(1-3): 131-141.
[10]Jain M, Allin J, Bull M J. Deep drawing characteristics of automotive aluminum alloys[J]. Materials Science and Engineering A, 1998, 256(1-2): 69-82.
[11]Hiroshi Koyama, Robert H Wagoner, Ken-ichi Manabea.Blank holding force control in panel stamping process using a database and FEM-assisted intelligent press control system[J].Journal of Materials Processing Technology,2004, 152(2):190-196.
[12]汪锐,罗亚军, 何丹农, 等.基于模糊神经网络的压边力优化控制专家系统[J].上海交通大学学报, 2001, 35(3): 411-415.
Wang R, Luo Y J, He D N, et al.Expert system based on fuzzy neural network for the optimal control of blank holder force [J]. Journal of Shanghai Jiao Tong University, 2001, 35(3): 411-415.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9