网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ti2AlNb合金超塑成形/扩散连接工艺
英文标题:Superplastic forming/diffusion bonding technology for Ti2AlNb alloy
作者:王珏 张晓巍 王国峰 
单位:沈阳飞机工业(集团)有限公司 哈尔滨工业大学 
关键词:Ti2AlNb合金 热物性能 超塑成形 扩散连接 厚度变化 
分类号:V252.2
出版年,卷(期):页码:2019,44(11):91-98
摘要:
为研究和验证Ti2AlNb合金的超塑成形性能,对其热物性能进行了测试,得到Ti2AlNb合金常温和高温下的热导率、比热容和热膨胀系数;结合热物性能测试结果,采用MSC.MARC软件对航空典型尺寸的2层Ti2AlNb合金结构件进行超塑成形/扩散连接(SPF/DB)工艺模拟,对其成形后的厚度变化和应力分布进行分析;采用超塑成形/扩散连接工艺成功制备出航空典型尺寸的2层Ti2AlNb合金结构件,并对其关键部位厚度、扩散连接区域金相及扩散连接区域强度进行分析和测定。试验结果表明:在成形温度为970 ℃、应变速率为3×10-4 s-1的条件下,可以实现2层Ti2AlNb合金结构件的制备,且结构件成形质量好,满足航空工程制造要求,试验结果与模拟仿真结果吻合。
In order to study and verify the superplastic forming properties of Ti2AlNb alloy, the thermal properties of Ti2AlNb alloy were tested, and the thermal conductivity, specific heat capacity and thermal expansion coefficient of Ti2AlNb alloy at room temperature and high temperature were obtained. Combined with the test results of thermal properties, the superplastic forming/diffusion bonding(SPF/DB)process of two-layer Ti2AlNb alloy structural parts with typical aeronautical dimensions was simulated by MSC.MARC software, and the thickness change and stress distribution after forming were analyzed. Then, the two-layer Ti2AlNb alloy structural parts with typical aeronautical dimensions were successfully fabricated by SPF/DB process, and the thickness of key positions, the metallographic structure and strength of diffusion bonding area were analyzed and measured. The test results show that the two-layer Ti2AlNb alloy structure parts can be fabricated at the forming temperature of 970 ℃ and the strain rate of 3×10-4 s-1, and the forming quality of structural parts is good to meet the requirements of aeronautical engineering manufacturing. Thus, the test results are in good agreement with the simulation results.
基金项目:
国家自然科学基金资助项目(5187122)
作者简介:
王珏(1986-),男,硕士,高级工程师,E-mail:wangjue_wangjue@126.com
参考文献:
[1]钱九红. 航空航天用新型钛合金的研究发展及应用[J]. 稀有金属, 2000, 24(3): 218-223.
Qian J H. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000, 24(3): 218-223.
[2]侯志远. W元素对定向凝固Ti-45Al-6Nb合金组织与性能的影响[D]. 南京: 南京理工大学, 2016.
Hou Z H. Effects of W on the Microstructure and Properties of Directional Solidified Ti-45Al-6Nb Alloy[D]. Nanjing: Nanjing University of Science & Technology, 2016.
[3]张继, 仲增镛. TiAl金属间化合物工程实用化研究与进展[J]. 中国材料进展, 2010, 29(2): 9-13.
Zhang J, Zhong Z Y. Research and development of TiAl intermetallics-based alloys[J]. Materials China, 2010, 29(2): 9-13.
[4]李金山, 张铁邦, 常辉, 等. TiAl基金属间化合物的研究现状与发展趋势[J]. 中国材料进展, 2010, 29(3): 1-5.
Li J S, Zhang T B, Chang H, et al. Recent achievements and future directions of TiAl-based intermetallic compounds[J]. Materials China, 2010, 29(3): 1-5.
[5]王斌, 张凯锋, 蒋少松, 等. Ti2AlNb合金超塑成形/扩散连接工艺研究[J]. 哈尔滨工业大学学报, 2016, 48(5): 72-76.
Wang B, Zhang K F, Jiang S H, et al. Research on superplastic forming/diffusion bonding technology of Ti2AlNb alloy[J]. Journal of Harbin Institute of Technology, 2016, 48(5): 72-76.
[6]郭和平, 曾元松, 李志强. O相合金Ti2AlNb的超塑性研究进展[J]. 航空制造技术, 2009, (10):64-67.
Guo H P, Zeng Y S, Li Z Q. Research progress of superplasticity of intermetallic Ti2AlNb orthorhombic alloys[J]. Aeronautical Manufacturing Technology, 2009, (10): 64-67.
[7]代想想. Ti2AlNb高温性能数据库建立与异形筒超塑成形工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
Dai X X. Establishment of Ti2AlNb Performance Database and Research on SPF Processing of Abnormity Tube [D]. Harbin: Harbin Institute of Technology, 2015.
[8]王新, 卢斌, 王娟华, 等. 退化态Ti2AlNb合金板材的超塑性变形行为[J]. 中国有色金属学报, 2010, 20(1): 289-292.
Wang X, Lu B, Wang J H, et al. Superplastic deforming behavior of annealed Ti2AlNb alloy sheet[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 289-292.
[9]Leyens C,Peters M. 钛与钛合金[M]. 陈振华, 译. 北京: 化学工业出版社, 2006.
Leyens C, Peters M. Titanium and Titanium Alloys[M]. Translated by Chen Z H. Beijing: Chemical Industry Press, 2006.
[10]Lin P, He Z B, Yuan S J, et al. Tensile deformation behavior of Ti-22Al-25Nb alloy at elevated temperatures[J]. Materials Science and Engineering A, 2012, 556: 617-624.
[11]刘雨生, 李萍, 王斌, 等. Ti2AlNb合金多层板结构超塑成形/扩散那连接数值模拟及试验研究[J]. 机械工程学报, 2015, 51(12): 43-49.
Liu Y S, Li P, Wang B, et al. Numerical simulation and technical study on superplastic forming/diffusion bonding for multi-sheet structure of Ti2AlNb alloy[J]. Journal of Mechanical Engineering, 2015, 51(12): 43-49.
[12]李少雨. Ti2AlNb基合金相变及超塑性变形机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
Li S Y. Phase Transformation and Superplasticity Deformation Mechanism in Ti2AlNb-based Alloys[D]. Harbin: Harbin Institute of Technology, 2013.
[13]高静. Ti-23Al-26Nb合金多层结构SPF/DB工艺[D]. 哈尔滨: 哈尔滨工业大学, 2014.
Gao J. SPF/DB Processing of Multi-layer Structure for Ti-23Al-26Nb Alloy[D]. Harbin: Harbin Institute of Technology, 2014.
[14]宋玉泉, 管志平. 李志刚, 等. 应变速率敏感性指数的理论和测量规范[J]. 中国科学, 2007, 37(11): 1363-1382.
Song Y Q, Guan Z P, Li Z G, et al. Theory and measurement specification of strain rate sensitivity index[J]. Science In China Press, 2007, 37(11): 1363-1382.
[15]方赫. Ti-22Al-24Nb合金超塑性能及SPF/DB工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
Fang H. Research on Superplasticity and SPF/DB Processing of Ti-22Al-24Nb Alloy[D]. Harbin: Harbin Institute of Technology, 2013.
[16]杜志豪. 钛铝系合金热变形行为与扩散连接性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
Du Z H. Hot Deformation Behavior and Diffusion Bondability of Ti-Al System Alloy[D]. Harbin: Harbin Institute of Technology, 2016.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9