网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
C19400铜板带可逆热轧有限元模型的建立及分析
英文标题:Establishment and analysis on finite element model for C19400 copper strip in reversible hot rolling
作者:张启航 苏娟华 张学宾 侯文武 皇涛 宋克兴 
单位:河南科技大学 有色金属共性技术河南省协同创新中心 铜陵金威铜业有限公司 
关键词:C19400铜板带 可逆热轧 轧制力 等效应变 等效应力 DEFORM-3D 
分类号:TG339
出版年,卷(期):页码:2019,44(12):11-19
摘要:

基于企业生产工艺和三维有限元理论,通过DEFORM-3D平台建立了C19400铜板带可逆热轧有限元模型,并根据企业现场实测C19400铜板带轧制力验证了该模型的准确性。利用该模型模拟了前3道次热轧时C19400铜板带等效应变、等效应力、温度场和轧制力的变化情况。结果表明:计算轧制力与企业现场实测数据较为吻合,其中,3个道次的相关系数R分别为0.970,0.996和0.994,平均相对误差AARE分别为5.8%,3.3%和4.1%;等效应变分布较均匀,最大等效应变位于轧辊与轧件接触的棱边处,3个道次分别为0.568,1.283和2.130;最大等效应力位于轧件棱角处和轧辊与轧件接触的轧制区域,且以此区域为中心,等效应力向四周逐渐减小,最大等效应力为88.1 MPa

Based on the enterprise production process and three-dimensional finite element theory, the finite element model of reversible hot rolling for C19400 copper strip was established by DEFORM-3D platform, and the accuracy of the model was verified by the on-site measured rolling force of C19400 copper strip. Then, the changes of equivalent strain, equivalent stress, temperature field and rolling force during the first three passes of hot rolling were simulated by the above model. The results show that the calculated rolling force is in good agreement with the measured rolling force, and the correlation coefficients R of the three passes are 0.970, 0.996 and 0.994, respectively. Furthermore, the average relative errors AARE are 5.8%, 3.3% and 4.1% respectively. And the equivalent strain distribution is relatively uniform, and the maximum equivalent strain is at the edge where the roller contacts the rolling piece, and the corresponding data of the three passes are 0.568, 1.283 and 2.13, respectively. Then, the maximum equivalent stress is at the edge of the rolling piece and the rolling zone where the roller is in contact with the rolling piece, and the equivalent strain gradually decreases to the periphery from the center of the zone with the maximum equivalent stress of 88.1 MPa.

基金项目:
国家重点研发计划(2017YFB0306400);河南省杰出人才创新基金(182101510003);河南省创新型科技团队(C20150014)
作者简介:
张启航(1994-),男,硕士研究生 E-mail:qhzhang370@163.com 通讯作者:苏娟华(1963-),女,博士,教授 E-mail:sujh@haust.edu.cn
参考文献:


[1]韩晨, 孙付涛. C19400铜板带热轧实践与分析
[J]. 上海有色金属, 2012, 33(3): 107-112,117.


Hang C,Sun F T. Hot rolling practice and analysis of C19400 copper strip
[J].Shanghai Nonferrous Metals,2012, 33(3): 107-112,117.



[2]易志辉. C7025铜合金带材的生产工艺研究
[J]. 上海有色金属, 2012, 33(4): 158-161.


Yi Z H. Study on the production technology of copper strip alloy C7025
[J]. Shanghai Nonferrous Metals,2012, 33(4): 158-161.



[3]邱哲生, 鲁俐, 贾瑞娇, 等. 铝合金热轧板带成形过程中的应变数值模拟
[J]. 有色金属加工, 2019,48(2):18-25.


Qiu Z S, Lu L, Jia R J, et al. Numerical simulation on strain of aluminum alloy sheet by hot-rolling
[J].Nonferrous Metals Processing, 2019, 48(2):18-25.



[4]金贺荣, 段昌新, 戴超. 316L/EH40复合板可逆热轧过程数值模拟
[J]. 塑性工程学报, 2019, 26(1): 82-88.


Jin H R, Duan C X, Dai C. Numerical simulation of 316L /EH40 clad plate during reversible hot rolling process
[J].Journal of Plasticity Engineering,2019, 26(1): 82-88.



[5]Zhang B, Liang X P, Fu J F. Numerical simulation of temperature and effective strain distribution of aluminum alloy in the whole rough rolling process
[J].Applied Mechanics and Materials, 2014, 602-605: 326-329.


[6]魏佳佳, 文九巴, 贺俊光, 等. 基于DEFORM-3D平台下的铝合金轧制裂纹预测研究
[J]. 塑性工程学报, 2017, 24(2): 93-98.


Wei J J, Wen J B, He J G, et al. Rolling crack prediction of aluminum alloy based on DEFORM-3D platform
[J]. Journal of Plasticity Engineering,2017, 24(2): 93-98.



[7]张学奇, 董万鹏, 苏钰, 等 .基于Deform-3D的花键轴叉热锻成形工艺优化
[J].锻压技术,2017,42(1):5-9.


Zhang X Q, Dong W P, Su Y, et al. Process optimization on hot forging for spline shaft fork based on Deform-3D
[J]. Forging & Stamping Technology,2017, 42(1): 5-9.



[8]Zhang H,Zhang H G, Li L. Hot deformation behavior of Cu-Fe-P alloys during compression at elevated temperatures
[J]. Journal of Materials Processing Technology, 2009, 209(6): 2892-2896.



[9]张红钢, 张辉, 刘婉容, 等. C194铜合金热压缩变形流变应力
[J]. 湘潭大学自然科学学报, 2003, 25(3) : 82-86.


Zhang H G, Zhang H, Liu W R, et al. Rheologic stress of C194 copper alloy under hot compression deformation
[J]. Natural Science Journal of Xiangtan University,2003, 25(3): 82-86.



[10]汪建强, 郭丽丽, 李永兵, 等. 6016铝合金板材室温成形性及其数值模拟
[J]. 塑性工程学报, 2018, 25(2): 43-51.


Wang J Q, Guo L L, Li Y B, et al. Formability and numerical simulation of 6016 aluminum alloy sheet at room temperature
[J].Journal of Plasticity Engineering,2018, 25(2): 43-51.



[11]李林鑫, 银强, 陈显均. 基于DEFORM-3D的半轴齿轮锻造工艺优化设计与仿真分析
[J].锻压技术,2018,43(3):26-30.


Li L X, Yin Q, Chen X J. Optimization design and simulation analysis on forging process of semi-axle gear based on DEFORM-3D
[J]. Forging & Stamping Technology,2018, 43(3): 26-30.



[12]刘阳阳, 文九巴, 贺俊光. 5052铝合金室温轧制模拟与实验
[J]. 塑性工程学报, 2018, 25(5): 185-193.


Liu Y Y, Wen J B, He J G. Simulation and experiment of rolling for aluminum alloy 5052 at room temperature
[J].Journal of Plasticity Engineering,2018, 25(5): 185-193.



[13]陈灵, 谭自盟, 段亚菲, 等. 接触传热对7075铝合金热轧影响的数值模拟
[J]. 模具工业, 2017, 43(7): 25-29.


Chen L, Tan Z M, Duan Y F, et al. Numerical simulation for the effect of contact heat transfer on 7075 aluminum alloy hot rolling
[J]. Die & Mould Industry,2017, 43(7): 25-29.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9