网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
AA6061铝合金铸坯平面压缩本构模型及组织演变
英文标题:Constitutive model and microstructure evolution of AA6061 aluminum alloy casting blank in plain compression
作者:秦芳诚 齐会萍 康跃华 李永堂 刘崇宇 
单位:桂林理工大学 太原科技大学 广东省材料与加工研究所 
关键词:AA6061铝合金铸坯 平面压缩 流变应力 本构模型 组织演变 
分类号:TG146.2
出版年,卷(期):页码:2019,44(12):159-166
摘要:

利用Gleeble-3500热力模拟实验机研究AA6061铝合金铸坯平面压缩变形行为,分析其流变应力和组织演变规律。结果表明:平面压缩过程中流变应力随着变形温度的升高和应变速率的减小而逐渐降低;低温和低应变速率下(573 K/0.01 s-1),随着应变量增大,达到峰值应力后应力软化程度较大。同时,建立了描述AA6061铝合金铸坯平面压缩变形行为的双曲正弦型本构关系模型。大变形区的晶粒呈扁长的板条状,其晶界处有大量的第2相析出,晶粒的长径比随温度升高而减小,随应变速率增大而增大,小变形区晶粒组织形貌主要为椭圆形等轴状晶;高温下(723 K),部分第2相溶入晶粒内部,热变形组织演变机理主要为动态回复。

The plain compression deformation behaviors of AA6061 aluminum alloy casting blank were studied by Gleeble-3500 thermal simulator, and the rheological stress and microstructure evolution were analyzed. The results show that the rheological stress decreases with the increasing of deformation temperature and the decreasing of strain rate during the plain compression process, and at a low temperature and low strain rate(573 K/0.01 s-1), with the increasing of strain, the stress softening degree becomes larger after reaching the peak stress. At the same time, the hyperbolic-sine type constitutive model is developed to describe the plain compression deformation behaviors of AA6061 aluminum alloy casting blank. Therefore, the grains in the large deformation areas are characterized by the elongated lath-shape, and the second phases are precipitated in the grain boundaries. Furthermore, the length-diameter ratio of grain decreases with the increasing of temperature and increases with the increasing of strain rate, the microstructures in the small deformation areas are described by oval equiaxial grains, and the second phase dissolves into the grain at the higher temperature(723 K). Thus, the mechanism of the microstructure evolution in thermal deformation is mainly dynamic recovery.

基金项目:
广东省科学院创新驱动发展项目(2018GDASCX-0965);广西自然科学基金青年项目(2018GXNSFBA281056);国家自然科学基金面上项目(51575371, 51875383);桂林理工大学科研启动基金(GUTQDJJ2017140);广西科技重大专项 (GKAA17202007)
作者简介:
秦芳诚(1988-),男,博士,讲师,硕士生导师 E-mail:qinfangcheng@glut.edu.cn 通讯作者:齐会萍(1974-),女,博士,副教授,硕士生导师 E-mail:qhp9974@tyust.edu.cn
参考文献:


[1]Ozturk F, Sisman A, Toros S, et al. Influence of aging treatment on mechanical properties of 6061 aluminum alloy
[J]. Materials & Design, 2010, 31(2): 972-975.



[2]Lee W S, Shyu J C, Chiou S T. Effect of strain rate on impact response and dislocation substructure of 6061-T6 aluminum alloy
[J]. Scripta Materialia, 2000, 42(1): 51-56.



[3]Iqbal U M, Kumar V S S. An analysis on effect of multipass twist extrusion process of AA6061 alloy
[J]. Materials & Design, 2013, 50: 946-953.



[4]Anjami N, Basti A. Investigation of rolls size effects on hot ring rolling process by coupled thermo-mechanical 3D-FEA
[J]. Journal of Materials Processing Technology, 2010, 210(10): 1364-1377.



[5]Yang H, Wang M, Guo L G, et al. 3D coupled thermo-mechanical FE modeling of blank size effects on the uniformity of strain and temperature distributions during hot rolling of titanium alloy large rings
[J]. Computational Materials Science, 2008, 44(2): 611-621.



[6]Qin F, Li Y, Qi H, et al. Microstructure-texture-mechanical properties in hot rolling of a centrifugal casting ring blank
[J]. Journal of Materials Engineering and Performance, 2016, 25(3): 1237-1248.



[7]De Pari Jr L, Misiolek W Z. Theoretical predictions and experimental verification of surface grain structure evolution for AA6061 during hot rolling
[J]. Acta Materialia, 2008, 56(20): 6174-6185.



[8]Cheng L, Xue X, Tang B, et al. Deformation behavior of hot-rolled IN718 superalloy under plane strain compression at elevated temperature
[J]. Materials Science and Engineering: A, 2014, 606: 24-30.



[9]Bontcheva N, Petzov G, Parashkevova L. Thermomechanical modelling of hot extrusion of Al-alloys, followed by cooling on the press
[J]. Computational Materials Science, 2006, 38(1): 83-89.



[10]Grass H, Krempaszky C, Werner E. 3-D FEM-simulation of hot forming processes for the production of a connecting rod
[J]. Computational Materials Science, 2006, 36(4): 480-489.



[11]Xiao M, Li F, Zhao W, et al. Constitutive equation for elevated temperature flow behavior of TiNiNb alloy based on orthogonal analysis
[J]. Materials & Design, 2012, 35: 184-193.



[12]Samantaray D, Mandal S, Bhaduri A K. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel
[J]. Computational Materials Science, 2009, 47(2): 568-576.



[13]Cheng J, Nemat-Nasser S. A model for experimentally-observed high-strain-rate dynamic strain aging in titanium
[J]. Acta Materialia, 2000, 48(12): 3131-3144.



[14]McQueen H J, Ryan N D. Constitutive analysis in hot working
[J]. Materials Science and Engineering: A, 2002, 322(1-2): 43-63.



[15]Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel
[J]. Materials Science and Engineering: A, 2009, 500(1-2): 114-121.



[16]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working
[J]. Materials & Design, 2011, 32(4): 1733-1759.



[17]Mirzadeh H, Parsa M H, Ohadi D. Hot deformation behavior of austenitic stainless steel for a wide range of initial grain size
[J]. Materials Science and Engineering: A, 2013, 569: 54-60.



[18]Peng W, Zeng W, Wang Q, et al. Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models
[J]. Materials & Design, 2013, 51: 95-104.



[19]Liu J, Zeng W, Lai Y, et al. Constitutive model of Ti17 titanium alloy with lamellar-type initial microstructure during hot deformation based on orthogonal analysis
[J]. Materials Science and Engineering: A, 2014, 597: 387-394.



[20]Ezatpour H R, Sabzevar M H, Sajjadi S A, et al. Investigation of work softening mechanisms and texture in a hot deformed 6061 aluminum alloy at high temperature
[J]. Materials Science and Engineering: A, 2014, 606: 240-247.



[21]Dorbane A, Ayoub G, Mansoor B, et al. Observations of the mechanical response and evolution of damage of AA6061-T6 under different strain rates and temperatures
[J]. Materials Science and Engineering: A, 2015, 624: 239-249.



[22]黄世鹏. 6061铝合金多向锻造过程和微观组织演变的研究
[D]. 南宁:广西大学,2017.


Huang S P. Study on the Multiple Forging Process and Microstructure Evolution of 6061 Aluminum Alloy
[D]. Nanning: Guangxi University,2017.



[23]肖艳红,郭成,郭小艳. 7A04铝合金热变形过程微观组织演变
[J]. 塑性工程学报,2012,19(3):94-97.


Xiao Y H,Guo C,Guo X Y. Microstructure evolution of 7A04 during hot deformation process
[J]. Journal of Plasticity Engineering,2012,19(3):94-97.



[24]戴青松,欧世声,邓来运,等. 5083铝合金的热变形组织演变及晶粒度模型
[J]. 材料导报,2017,31(7):144-152.


Diao Q S,Ou S S,Deng L Y,et al. Microstructure evolution and grain size model of 5083 aluminum alloy during hot deformation
[J]. Materials Review,2017,31(7):144-152.



[25]Sellars C M, McTegart W J. On the mechanism of hot deformation
[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.



[26]Cerri E, Evangelista E, Forcellese A, et al. Comparative hot workability of 7012 and 7075 alloys after different pretreatments
[J]. Materials Science and Engineering: A, 1995, 197(2): 181-198.



[27]Liu Y X, Lin Y C, Zhou Y. 2D cellular automaton simulation of hot deformation behavior in a Ni-based superalloy under varying thermal-mechanical conditions
[J]. Materials Science and Engineering: A, 2017, 691: 88-99.



[28]Chen S, Chen K, Peng G, et al. Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy
[J]. Journal of Alloys and Compounds, 2012, 537: 338-345.



[29]Liu S, You J, Zhang X, et al. Influence of cooling rate after homogenization on the flow behavior of aluminum alloy 7050 under hot compression
[J]. Materials Science and Engineering: A, 2010, 527(4-5): 1200-1205.



[30]Zhang J, Chen B, Baoxiang Z. Effect of initial microstructure on the hot compression deformation behavior of a 2219 aluminum alloy
[J]. Materials & Design, 2012, 34: 15-21.

 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9