[1]Deng C, Han Y, Zhao B. High-performance visual tracking with extreme learning machine framework [J]. IEEE Transactions on Cybernetics, 2019,26(3): 1-12.
[2]韩红桂, 乔俊飞, 薄迎春. 基于信息强度的RBF神经网络结构设计研究 [J]. 自动化学报, 2012,38(7): 1083-1090.
Han H G, Qiao J F, Bo Y C. On structure design for RBF neural network based on information strength [J]. Acta Automatica Sinica,2012, 38(7): 1083-1090.
[3]Zhao Z, Yang J, Che H, et al. Application of artificial bee colony algorithm to select architecture of a optimal neural network for the prediction of rolling force in hot strip rolling process [J]. Journal of Chemical and Pharmaceutical Research, 2013, 5(9): 563-570.
[4]Yan W, Tang D, Lin Y. A data-driven soft sensor modeling method based on deep learning and its application [J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4237-4245.
[5]Yao L, Ge Z. Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application [J]. IEEE Transactions on Industrial Electronics, 2017, 65(2): 1490-1498.
[6]Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion [J]. Journal of Machine Learning Research, 2010, 11(12): 3371-3408.
[7]Zhang H, Zhang S, Yin Y. Online sequential ELM algorithm with forgetting factor for real applications [J]. Neurocomputing, 2017, 261: 144-152.
[8]Lekamalage C K L, Song K, Huang G, et al. Multi layer multi objective extreme learning machine [A].Dong F.2017 IEEE International Conference on Image Processing [C].Beijing:IEEE,2017.
[9]Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications [J]. Neurocomputing, 2006, 70(1-3): 489-501.
[10]何群, 王红, 江国乾, 等. 基于相关主成分分析和极限学习机的风电机组主轴承状态监测研究 [J]. 计量学报, 2018, 39(1): 89-93.
He Q, Wang H, Jiang G Q, et al. Research of wind turbine main bearing condition monitoring based on correlation PCA and ELM [J]. Acta Metrologica Sinica, 2018, 39(1): 89-93.
[11]Toh K. Deterministic neural classification [J]. Neural Computation, 2008, 20(6): 1565-1595.
[12]Lu C B, Mei Y. An imputation method for missing data based on an extreme learning machine auto-encoder [J]. IEEE Access, 2018, 6: 52930-52935.
[13]Gopakumar V, Tiwari S, Rahman I. A deep learning based data driven soft sensor for bioprocesses [J]. Biochemical Engineering Journal, 2018, 136: 28-39.
[14]Su X, Zhang S, Yin Y, et al. Prediction of hot metal silicon content for blast furnace based on multi-layer online sequential extreme learning machine [A]. Chen X.The 37th Chinese Control Conference [C].Wuhan:IEEE,2018.
[15]魏立新,张宇,孙浩, 等. 基于改进OS-ELM的冷连轧在线轧制力预报 [J].计量学报,2019,40(1):111-116.
Wei L X, Zhang Y, Sun H, et al. Online cold rolling prediction based on improved OS-ELM [J]. Acta Metrologica Sinica, 2019,40(1):111-116.
[16]王军生, 赵启林, 矫志杰, 等. 冷连轧过程控制变形抗力模型的自适应学习 [J]. 东北大学学报, 2004, 25(10): 973-976.
Wang J S, Zhao Q L,Jiao Z J, et al. Adaptive learning of the model of deformation resistance model for tandem cold rolling process control [J]. Journal of Northeastern University, 2004, 25(10): 973-976.
|