网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高合金钢冷轧工作辊锻造过程数值模拟
英文标题:Numerical simulation of forging process for high alloy steel cold work roller
作者:王泽 王婷婷 金东浩 齐晓红 郭婧 
单位:华北理工大学 冶金与能源学院 
关键词:冷轧工作辊 锻造 温度场 应力场 高合金钢 
分类号:TG317
出版年,卷(期):页码:2020,45(1):22-29
摘要:

 采用Deform-3D软件对一种新型高合金钢冷轧工作辊锻造以及锻前空冷过程进行数值模拟。首先,根据实际产品和液压机压头尺寸建立锻件和模具模型并进行了网格划分,对所采用的高合金钢进行热力学测试从而建立了材料模型。通过分析在空冷和锻造过程中锻件温度场和应力场分布,获得了锻件在空冷过程中温度变化规律,以及在锻造过程中锻造区域典型位置处的温度和应力分布特征。此外,参考模拟结果,并结合实际经验对这种新型冷轧工作辊进行锻造,实际锻造结果与模拟得到的最终结果十分接近,验证了采用有限元方法对轧辊锻造过程进行模拟是可行的。为冷轧工作辊的实际锻造生产提供理论指导。

 Numerical simulation of forging process and air-cooling process before forging for a novel high alloy steel cold work roller was conducted by software Deform-3D. Firstly, according to the sizes of real product and head of hydraulic machine, the models of forging part and mold were established and meshed, and the thermodynamic measurement of the adopted high alloy steel was conducted and the material model was built. Then, through analyzing the distribution of temperature field and stress field for forging part during the air-cooling and forging process, the change law of temperature for forging part during the air-cooling process was obtained, and the temperature and stress characteristics at typical positions in the forging area during the forging process were given. In addition, the novel cold work roller was forged referring to the simulated results and combining with the actual experience, and the actual forging results were quite close to the simulated results. Thus, the feasibility of simulating the forging process by finite element method was verified to provide theoretical guidance for the actual forging production of cold work roller.

基金项目:
河北省自然科学基金钢铁联合基金(E2017209180);校级大学生创新训练项目(X2018345)
作者简介:
作者简介:王泽(1998-),男,本科生 E-mail:awangzya@163.com 通讯作者:郭婧(1986-),女,博士,副教授 E-mail:guojing861014@163.com
参考文献:

 [1]贺强, 张拥军. 冷轧工作辊剥落失效分析与预防措施[J]. 金属热处理, 2011, 36(S1): 365-369.


He Q, Zhang Y J. Failure analysis of cold working roll and its prevention measures [J]. Heat Treatment of Metals, 2011, 36(S1): 365-369.


[2]黄鑫, 吴君三, 朱乾皓, . 70Cr3NiMo钢轧辊探伤不合格原因分析及改善措施[J]. 锻压技术, 2019,44(10):20-24.


Huang X, Wu J S, Zhu Q H, et al. Analysis on disqualification reason and improvement measures of steel 70Cr3NiMo roller by ultrasonic inspection [J]. Forging & Stamping Technology, 2019,44(10):20-24.


[3]赵新, 李文平, 刘德富, . 冷轧辊材料及制造技术的发展[J]. 大型铸锻件, 2004, 3: 38-42.


Zhao X, Li W P, Liu D F, et al. The development of the cold work roll material and its manufacturing technique [J]. Heavy Casting and Forging, 2004, 3: 38-42.


[4]路建峰, 罗昌, 张青. 冷轧工作辊椭圆形开裂原因分析[J]. 现代冶金, 2011, 39(5): 22-24.


Lu J F, Luo C, Zhang Q. Analysis on the causes of elliptic cracking in cold work roll [J]. Modern Metallurgy, 2011, 39(5): 22-24.


[5]刘均贤, 韩静涛, 张永军. 轧辊用高速钢材料的研究现状[J]. 材料导报, 2009, 23(7): 74-77.


Liu J X, Han J T, Zhang Y J. Research status of high speed steel for rolls [J]. Materials Review, 2009, 23(7): 74-77.


[6]Guo J, Liao B, Liu L, et al. Forging limit of a novel high-speed-steel cold work roll based on ductile fracture criteria by finite element model [J]. Materials and Design2013, 52: 1027-1034.


[7]白万真, 魏世忠, 龙锐, . 冷轧辊典型失效形式分析综述[J]. 铸造技术, 2006, 27(9): 1010-1014.


Bai W Z, Wei S Z, Long R, et al. Analysis and reviews on the typical failure forms of cold roll[J]. Foundry Technology, 2006, 27(9): 1010-1014.


[8]刘文彦. HC六辊冷轧机垂扭耦合振动分析[J]. 锻压技术, 2018, 43(3): 124-127.


Liu W Y. Analysis of vertical torsional coupled vibration of six-roll cold rolling mill HC [J]. Forging & Stamping Technology, 2018, 43(3): 124-127.


[9]田峰, 贾琛. 大型锻件的锻造工艺研究进展[J]. 热加工工艺, 2015, 44(5): 10-12.


Tian F, Jia C. Research progress on forging process for large forgings[J]. Hot Working Technology, 2015, 44(5): 10-12.


[10]刘利刚, 李强, 郭婧, . 一种新型冷轧工作辊用高速钢的热变形行为[J]. 材料热处理学报, 2012, 33(8): 89-95.


Liu L G, Li Q, Guo J, et al. Hot deformation behavior of a novel high speed steel for cold mill work roller [J]. Transactions of Materials and Heat Treatment, 2012, 33(8): 89-95.


[11]R Matsumoto, Y Osumi, H Utsunomiya. Reduction of friction of steel covered with oxide scale in hot forging[J]. Journal of Materials Processing Technology, 2014, 214(3): 651-659.


[12]商燕. 高强铝合金疲劳断裂过程的微观机理研究及有限元模拟[D]. 秦皇岛: 燕山大学, 2012.


Shang Y. Micromechanism Study and Finite Element Simulation of Fatigue Fracture Process of High Strength Aluminum Alloy[D]. Qinghuangdao: Yanshan University, 2012.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9