网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
电驱液压式大截面导线压接设备自动化研究
英文标题:Research on electric-hydraulic type wire crimping automation equipment with large section
作者:薛光辉 柴敬轩 张军 张云飞 管健 
单位:中国矿业大学(北京) 国家电网中国电力科学研究院 
关键词:导线压接设备 直驱式容积控制电液伺服技术 DEFORM仿真 自动控制 耐张线夹 
分类号:TG315
出版年,卷(期):页码:2020,45(2):137-144
摘要:
现有的压接设备可控性差、操作复杂,导致压接质量因人而异。针对此问题,提出了基于DDVC技术的导线压接设备自动化控制方案,建立了速度控制系统数学模型,应用Simulink进行仿真,分析系统性能。建立了基于DEFORM的耐张线夹压接实验模型,获得了耐张线夹压接的最佳加载速度曲线,并以此作为压接设备速度控制系统的Simulink仿真模型输入,对压接过程进行了仿真分析。结果表明:开环控制时系统存在一定的超调,加入PID控制后可有效抑制超调;所设计的压接设备可很好地跟随最佳压接曲线,跟随误差仅为0.904 mm·s-1。研究成果对改进压接设备、提高压接质量提供了新的解决方案。
The existing crimping equipment has poor controllability and complicated operation, and the quality of crimping varies from person to person. For the above problems, an automatic control scheme for wire crimping equipment based on DDVC technology was proposed, and the mathematical model of crimping speed control system was established. Then, the simulation was conducted by Simulink, and the system performance was analyzed. Furthermore, the experimental model of crimping for tension resistance clamp was established based on DEFORM, and the optimal loading speed curve of crimping for tension resistance clamp was obtained. Taking the curve as the input of the Simulink simulation model for the speed control system of crimping equipment, the crimping process was simulated numerically and analyzed. The results show that there is a certain overshoot in the open loop control system, and the overshoot is effectively suppressed after adding PID control. The crimping equipment designed can follow the optimum crimping curve well with following error of 0.904 mm·s-1. The results provide a new solution to improve the crimping equipment and improve the quality of crimping.
基金项目:
中央高校基本科研业务费专项资金资助项目(2009QJ16)
作者简介:
薛光辉(1977-),男,博士,副教授,E-mail:xgh@cumtb.edu.cn;通讯作者:柴敬轩(1994-),男,硕士研究生,E-mail:cjx6666@vip.163.com
参考文献:
[1]何喜梅,王志惠,云峰,等. 750 kV导线断裂原因分析及预防措施[J]. 热加工工艺,2018,47(4):257-259.
He X M, Wang Z H, Yun F, et al. Cause analysis and preventive measures of 750 kV conductor fracture [J]. Hot Working Technology, 2018, 47(4):257-259.
[2]王坤,郑准备,杨占君,等. 某220 kV输电导线断线原因分析[J]. 理化检验:物理分册,2018,54(9):692-697.
Wang K, Zheng Z B, Yang Z J, et al. Analysis on the cause of a 220 kV transmission line breaking [J]. Physical Testing and Chemical Analysis Part: Physical Testing, 2018, 54(9):692-697.
[3]李瑞,杨卫民,余虹云,等. 浙江某500 kV变电站线夹开裂原因分析[J]. 电力建设,2005,(8):30-34.
Li R, Yang W M, Yu H Y, et al. Analysis of the causes of cracks in a 500 kV substation in Zhejiang province[J]. Electric Power Construction, 2005, (8):30-34.
[4]牛海军,司佳钧,刘胜春,等. 铝合金芯铝绞线耐张线夹研制与压接性能分析[J]. 中国电机工程学报,2015,35(S1):249-254.
Niu H J, Si J J, Liu S C, et al. Research and development of tension-resistant clamp for aluminum strand wire with aluminum alloy core and analysis of its compression performance [J]. Proceedings of the CSEE, 2015, 35(S1):249-254.
[5]万建成,刘胜春,刘臻,等. 金具对大截面导线握力的影响因素[J]. 电力建设,2012,33(6):84-88.
Wan J C, Liu S C, Liu Z, et al. Influencing factors of gold fittings on the grip strength of large-section wires [J]. Electric Power Construction, 2012, 33(6):84-88.
[6]Q/GDW 1571—2014, 大截面导线压接工艺导则[S].
Q/GDW 1571—2014, Guidelines for crimping of large-section conductors[S].
[7]万建成,朱宽军,司佳钧,等. 大截面导线压接工艺导则解读[J]. 智能电网, 2014,2(10):55-60.
Wan J C, Zhu K J, Si J J, et al. Interpretation of large section wire compression process guide [J]. Smart Power Grid, 2014, 2(10):55-60.
[8]程文杰,戴林宏,张雷,等. 浅谈冷压压接法在电缆连接中的应用[J]. 安装, 2016,288(9):45-47.
Cheng W J, Dai L H, Zhang L, et al. The application of cold compression method in cable connection is briefly discussed [J]. Installation, 2016, 288(9):45-47.
[9]夏巨谌,邓磊,金俊松,等.我国精锻技术的现状及发展趋势[J].锻压技术,2019,44(6):116-129.
Xia J C, Deng L, Jin J S, et al. Current status and development trend of precision forging technology in China [J]. Forging & Stamping Technology, 2019, 44 (6): 116-129.
[10]王艳松,李文亚,杨夏炜,等. 冷压焊界面结合机理与结合强度研究现状[J]. 材料工程,2016,44(4):119-130.
Wang Y S, Li W Y, Yang X W, et al. Research status of interface bonding mechanism and bonding strength of cold press welding [J]. Journal of Materials Engineering, 2016, 44(4):119-130.
[11]曹静.导线压接机及超高压柱塞泵[J].电力建设, 1987,(6):51-52.
Cao J. Wire crimping machine and ultra-high pressure piston pump [J]. Electric Power Construction, 1987,(6):51-52.
[12]刘军龙,姜继海,欧进萍,等. 直驱容积控制电液伺服系统模型与动态特性[J]. 哈尔滨工业大学学报,2011,43(7):61-65.
Liu J L, Jiang J H, Ou J P, et al. Model and dynamic characteristics of direct drive volume control electro-hydraulic servo system [J]. Journal of Harbin Institute of Technology, 2011, 43(7):61-65.
[13]赵升吨,张鹏,范淑琴,等. 智能锻压设备及其实施途径的探讨[J]. 锻压技术,2018,43(7):32-48.
Zhao S D, Zhang P, Fan S Q, et al. Discussion on intelligent forging equipment and approaches of its implementation [J].Forging & Stamping Technology, 2018,43(7):32-48.
[14]韩贺永,乔永杰,刘少龙,等. 基于小波神经网络控制的伺服直驱泵控系统压力与位置特性分析[J]. 锻压技术,2018,43(2):122-127.
Han H Y, Qiao Y J, Liu S L, et al. Analysis on pressure and position characteristics of servo direct drive pump-control-cylinder system based on wavelet neural network control [J]. Forging & Stamping Technology, 2018, 43(2):122-127.
[15]李阁强,丁银亭,冯勇,等. 直驱式电液伺服模锻锤控制系统研究[J]. 锻压技术,2019,44(5):93-99.
Li G Q, Ding Y T, Feng Y, et al. Research on the control system for direct drive electro-hydraulic servo die forging hammer [J]. Forging & Stamping Technology, 2019,44(5):93-99.
[16]冯爱军,金榕. 影响导线压接握着力的因素分析[J]. 电力建设,2011,32(11):85-88.
Feng A J, Jin R. Analysis of factors affecting the grip force of wire crimp [J]. Electric Power Construction, 2011,32(11):85-88.
[17]朱艳君,寻凯,孔耕牛,等. 大截面导线压接产生散股原因分析及消除措施[J]. 电力建设,2010,31(4):94-99.
Zhu Y J, Xun K, Kong G N, et al. Analysis and elimination measures of bulk strands produced by crimping of large cross section wires [J]. Electric Power Construction, 2010, 31(4):94-99.
[18]俞新陆. 液压机的设计与应用[M]. 北京:机械工业出版社,2006.
Yu X L. Design and Application of Hydraulic Press [M]. Beijing:China Machine Press, 2006.
[19]韩启云,孙淼. 输电线路耐张管压接角度定位工具[J]. 电力建设,2012,33(7):86-89.
Han Q Y, Sun M. Analysis tool for tensioning angle of tension tube in transmission line [J]. Electric Power Construction, 2012, 33(7):86-89.
[20]包毅,张斌,付英华,等. 特高压定距式软母线压接装置的研制和应用[J]. 电力建设,2012,33(4):83-85.
Bao Y, Zhang B, Fu Y H, et al. Development and application of UHV fixed distance soft bus crimp device [J]. Electric Power Construction, 2012, 33(4):83-85.
[21]秦二卫. 直驱式电液伺服位置及压力控制系统的研究[D]. 哈尔滨:哈尔滨工业大学,2010.
Qin E W. Research on Direct Drive Electro Hydraulic Servo Position and Pressure Control System [D]. Harbin: Harbin Institute of Technolgy, 2010.
[22]李玉君,姜继海. 新型直驱式水下液压工具系统的设计与仿真[J]. 液压与气动,2018,8(17):95-101.
Li Y J, Jiang J H. Design and simulation based on DDVC for new underwater hydraulic tools system [J]. Chinese Hydraulics and Pneumatics, 2018,8(17):95-101.
[23]叶璋,高玉魁.基于DEFORM-2D的GH4169合金涡轮盘的热模锻残余应力研究[J].锻压技术,2018,43(3):1-7.
Ye W, Gao Y K. Research on residual stress of hot die forging of GH4169 alloy turbine disk based on DEFORM-2D[J].Forging & Stamping Technology,2018,43(3):1-7.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9