网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
径向锻造油压机电液伺服控制系统建模与仿真
英文标题:Modeling and simulation on electro-hydraulic servo control system for radial forging hydraulic press
作者:牛勇 权晓惠 张营杰 
单位:太原科技大学 中国重型机械研究院股份公司 
关键词:径向锻造油压机 电液伺服控制系统 反馈方式 回程压力 AMESim 
分类号:TG315.4
出版年,卷(期):页码:2020,45(2):144-152
摘要:
分析了径向锻造油压机主缸运动电液伺服控制原理;在建立电液伺服系统各元件、子系统数学模型的基础上,借助AMESim软件搭建了电液伺服系统的仿真模型;研究了反馈方式、回程压力、建压时间和加载频次对主缸运动精确性和快速性的影响。研究结果表明:与主缸位置反馈相比,伺服缸位置反馈时系统运行更加平稳;为保证系统的响应速度和主缸对伺服缸的跟随性,合理的回程压力为3~12 MPa;为保证系统的快速性、精确性及系统的经济性,尽量减少建压时间;主缸供液高压油液体积50000 mL时,伺服缸时间滞后0.03 s,主缸对伺服缸跟随滞后0.01 s;系统流量确定时,锻造频次增加使得锻造行程减小,控制精度降低,系统响应滞后。
The principle of electro-hydraulic servo control of the master cylinder motion for radial forging hydraulic press was analyzed, and the simulation model of the electro-hydraulic servo system was built by software AMESim based on the mathematic models of components and sub-systems in the electro-hydraulic servo system. Then, the influences of feedback mode, return pressure, pressure buildup time and loading frequency on the accuracy and rapidity of master cylinder motion were studied. The results show that compared with the master cylinder position feedback, the system operates more smoothly under the servo cylinder position feedback, and the reasonable return pressure is 3-12 MPa to ensure the response speed of system and the following of master cylinder to the servo cylinder. In order to ensure the rapidity, accuracy and economical efficiency of the system, the pressure buildup time is minimized. When the volume of high pressure oil supplying the master cylinder is 50000 mL, the time lag of servo cylinder is 0.03 s, and the follow lag of master cylinder to the servo cylinder is 0.01 s. When the system flow rate is fixed, increasing the forging frequency reduces the forging stroke, and reduces the control accuracy and lags the system response.
基金项目:
中国博士后科学基金资助项目(2015M570850);陕西省科技统筹创新工程计划项目(2015KTCQ01-81);太原科技大学科研启动基金(20192007)
作者简介:
牛勇(1981-),男,博士,讲师,高级工程师,E-mail:yong4102@163.com
参考文献:
[1]宋涛,赵升吨,刘洪宝.径向锻技术的应用及其发展[J].重型机械,2012,(3):11-16.
Song T, Zhao S D, Liu H B. Application and development of radial forging technology [J]. Heavy Machinery,2012, (3): 11-16.
[2]中国锻压协会. 特种锻造[M]. 北京:国防工业出版社, 2011.
Confederation of Chinese Metal Forming Industry. Special Forging[M]. Beijing: National Defense Industry Press, 2011.
[3]张洪奎,陈新建,王文革,等.径向锻造技术的应用[J]. 宝钢技术,2005,(5):15-17.
Zhang H K, Chen X J, Wang W G, et al. Application of radial forging technology[J]. Baosteel Technology, 2005, (5): 15-17.
[4]曹敏曼. 基于有限元的精锻机锤头再制造技术与工艺研究[D]. 太原:中北大学,2014.
Cao M M. The Research of Forging Machine Hammer Remanufacturing Technology Based on the FiniteElement Analysis[D]. Taiyuan: North University of China, 2014.
[5]卫建军. 火车轴径向锻造机锤头的有限元分析及优化[D].太原:太原科技大学,2008.
Wei J J. Finite Element Analysis and Optimization of the RadialForging Hammer[D]. Taiyuan:Taiyuan University of Science and Technology,2008.
[6]张建. 不同锤头和进给量对径向锻造高速钢M2碳化物的影响[D]. 石家庄:河北科技大学,2012.
Zhang J. Radial Forging M2-high Speed Steel on Different Hammer and Feed Influence on Carbide[D]. Shijiazhuang: Hebei University of Science and technology, 2012.
[7]樊黎霞, 赵轲, 董雪花. 身管径向精密锻造的塑性应变分析与锻造比研究[J]. 精密成形工程,2014,6(1):1-8.
Fan L X, Zhao K, Dong X H. Study on plastic strain and forging ratio in radial forging process of barrel[J]. Journal of Netshape Forming Engineering, 2014, 6(1):1-8.
[8]王连东,高权德,梁晨,等. 径向精密锻造机V字锥形锤砧锻造分析及数值模拟[J]. 机械工程学报,2011,47(20):146-151.
Wang L D, Gao Q D, Liang C, et al. Deformation analysis and numerical simulation of V-shaped cone anvil forging in the fine forging machine[J]. Journal of Mechanical and Engineering, 2011, 47(20): 146-151.
[9]葛鹏. 1.6 MN精锻机主机设计[D]. 兰州:兰州交通大学,2016.
Ge P. The Design of 1.6 MN Precision Forging Machine[D]. Lanzhou: Lanzhou Jiaotong University, 2016.
[10]姚静. 锻造油压机液压控制系统的关键技术研究[D].秦皇岛:燕山大学,2009.
Yao J. Research on Key Technology of Hydraulic Control System in Forging Oil Press[D]. Qinhuangdao:Yanshan University, 2009.
[11]陈柏金. 锻造液压机组液压控制系统研究[D]. 武汉:华中科技大学,2000.
Chen B J. Study on Hydraulic System of Free Forging Hydraulic Press[D]. Wuhan: Huazhong University of Science and Technology,2000.
[12]樊明振. 基于虚拟样机技术的31.5 MN快锻液压机机液联合仿真研究[D]. 重庆:重庆大学,2013.
Fan M Z. Study on Co-simulation of Machinery and Hydraulic for 31.5 MN Fast Forging Press[D]. Chongqing: Chongqing University, 2013.
[13]方锦辉. 大流量插装式伺服阀的设计与控制方法研究[D].杭州:浙江大学,2013.
Fang J H. The Design and Control Strategy Study of the Large-flow Cartridge Servo Valve[D]. Hangzhou: Zhejiang University, 2013.
[14]郑江.锻造操作机电液比例位置控制系统研究[D].武汉:华中科技大学,2003.
Zheng J. Study on Electro-hydraulic Proportional Control of Forging Manipulator[D]. Wuhan: Huazhong University of Science and Technology, 2003.
[15]刘治宇.锻造操作机夹钳升降液压系统建模与仿真[D].沈阳:东北大学,2008.
Liu Z Y. Modeling and Simulation of Parallel Lifting System of Forging Manipulator[D]. Shenyang:Northeastern University, 2008.
[16]许勇.重载夹持装置液压同步驱动系统的建模及内模控制研究[D].长沙:中南大学,2009.
Xu Y. Internal Model Control of Synchronization Driving with Load Balancing for Heavy-duty Gripping Devices[D]. Changsha: Central South University, 2009.
[17]傅新,徐明,王伟,等.锻造操作机液压系统设计与仿真[J].机械工程学报,2010,46(11):49-54.
Fu X, Xu M, Wang W, et al. Hydraulic system design and simulation of the forging manipulator[J]. Journal of Mechanical and Engineering,2010, 46(11): 49-54.
[18]Hou J Y, Zhou H, Zou J, et al.Velocity control ofthe horizontal buffer system for heavy loadforging manipulator [A]. The 3rd International Conference on Intelligent Robotics and Applications[C]. Shanghai, 2010.
[19]陈永新. 精校机电液位置伺服系统的研究[D]. 合肥:合肥工业大学,2004.
Chen Y X. Study on the Electron-hydraulic Position Servo System for Precise Straightening Press[D]. Hefei: Hefei University of Technology,2004.
[20]刘海丽, 李华聪. 液压机械系统建模仿真软件AMESim及其应用[J]. 机床与液压,2006,(6):124-126.
Liu H L, Li H C. Modeling and simulation software AMESim and its application for hydraulic-mechanic System[J]. Machine Tool & Hydraulics, 2006, (6):124-126.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9