摘要:
|
通过运用设计的3种新型等通道转角挤压模具,结合现有关于等通道转角挤压的研究,对304奥氏体不锈钢材料进行三维有限元模拟,研究了挤压过程中的载荷曲线变化、等效应力以及等效应变分布。结果表明,挤压方式的改变不会影响凸模载荷的大小;同时,对比了3种不同挤压方式下模具的等效应力、等效应变后发现,旋转90°工艺的等通道转角挤压模具的等效应力值最小,使其在转角处发生拉毛的概率最小,对模具损伤也最小,并且其等效应变值最大,对试样的细化效果最好。最后,通过采取点跟踪的方式绘制应变点循迹图,更直观地论述了旋转90°工艺的等通道转角挤压模具更具有实用价值,也为今后开发实用型的等通道转角挤压模具的设计提供了理论支撑。
|
Three dimensional finite element simulation of 304 austenite stainless steel was conducted by using three kinds of new equal channel angular pressing molds and combining with the existing research on equal channel angular pressing, and the change of load curve and the distributions of equivalent stress and equivalent strain in the extrusion process were studied. The results show that the change of extrusion mode does not affect the load of punch. At the same time, compared with the equivalent stress and equivalent strain of mold under three different extrusion modes, it is found that the equivalent stress value of equal channel angular pressing mold with rotating 90° is the smallest to obtain the smallest probability of hair drawing at the rotation angle, the mold damage is the smallest, and the equivalent strain value is maximum to cause the refinement effect. Finally, the strain point tracking diagram is drawn by means of point tracking to expound intuitively the equal channel angular pressing mold with rotating 90° process to have more practical value, which also provides theoretical support for the development of practical equal channel angular pressing mold design in the future.
|
基金项目:
|
地区科学基金项目资助(51665028)
|
作者简介:
|
段红燕(1978-),女,博士,副教授,E-mail:duanhy@lut.cn;通讯作者:王丽文(1990-), 男,硕士研究生,E-mail:872835656@qq.com
|
参考文献:
|
[1]韩飞. 304奥氏体不锈钢冷加工硬化及退火软化的研究[D].长沙:中南大学,2004. Han F. Study on Cold Working Hardening and Annealing Softening of 304 Austenitic Stainless Steel [D]. Changsha: Central South University, 2004. [2]龚志华,王宝锋,杨钢,等.00Cr18Ni12 奥氏体不锈钢多道次等通道冷挤压时的组织与性能[J]. 特殊钢, 2005, 26(1):24-26. Gong Z H, Wang B F, Yang G, et al. Microstructure and properties of 00Cr18Ni12 austenitic stainless steel during cold extrusion with multiple sub-channel [J]. Special Steel, 2005, 26(1): 24-26. [3]Segal V M, Reznikov V I, Drobyshevskiy A E, et al. Plastic working of metals by simple shear[J]. Russian Metallurgy, 1981, 19(1): 99-105. [4]杨钢,刘正东,林肇杰,等. 用等径角挤压变形法制备纳米晶金属结构材料的组织演变[J]. 钢铁,2003,38(12):38-42. Yang G, Liu Z D, Lin Z J, et al. Microstructure evolution of nanostructured metal during ECA pressing [J]. Iron and Steel, 2003, 38 (12): 38-42. [5]段红燕,杨勐. 基于有限元模拟的平行双通道挤压与单通道转角挤压的仿真比较[J]. 锻压技术,2018,43(3):83-88. Duan H Y, Yang M. Simulation comparison of parallel double-channel extrusion and single-channel angular extrusion based on finite element analysis [J]. Forging & Stamping Technology, 2018, 43 (3): 83-88. [6]Iwahashi Y, Horita Z, Nemoto M, et al. The process of grain refinement in equal-channel angular pressing[J].Acta Materialia,1998,46 (9):3317-3331. [7]李贝. AZ31 镁合金变通道转角挤压数值模拟[D]. 太原:太原科技大学,2012. Li B. Numerical Simulation of Variable Channel Angular Extrusion of AZ31 Magnesium Alloy [D]. Taiyuan: Taiyuan University of Science & Technology, 2012. [8]谢贤龙. 等径角变形优化奥氏体不锈钢性能的研究[D]. 南京:南京理工大学,2013. Xie X L. Investigation on Improvement of Propertied of an Austenitic Stainless Steel by Equal Channel Angular Pressing [D]. Nanjing: Nanjing University of Science & Technology, 2013. [9]王克平,赵西城. ECAP模具结构改进与设计[J]. 热加工工艺,2009,38(1):144-146, 149. Wang K P, Zhao X C. Design and improvement of die for ECAP [J]. Hot Working Technology, 2009, 38 (1): 144-146, 149. [10]王裕.等通道转角挤压的有限元模拟及应用[D].太原:太原理工大学,2006. Wang Y. Finite Element Simulation and Application of Equal Channel Angular Extrusion[D]. Taiyuan: Taiyuan University of Technology, 2006. [11]Iwahashi Yoshinori, Wang J T, Horita Zenji, et al. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials[J]. Scripta Materialia,1996,35(2):143-146. [12]吕哲,郑立静, 于燕,等. 7050铝合金等通道多转角挤压过程的三维有限元模拟[J]. 稀有金属材料与工程,2008,37(12):2125-2128. Lyu Z, Zheng L J, Yu Y, et al. Finite element simulation of deformation behavior of aluminum alloy 7050 during equal channel multi-angular pressing [J]. Rare Metal Materials and Engineering, 2008, 37 (12): 2125- 2128. [13]郑志军. ECAP制备的块体纳米晶304不锈钢的组织演变、力学性能与腐蚀行为[D]. 广州:华南理工大学,2012. Zheng Z J. Microstructure Evolution, Mechanical Property and Corrosion Behaviour of Bulk Nanocrystalline 304 Stainless Steel by Equal-channel Angular Pressing[D]. Guangzhou: South China University of Technology,2012.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|