[1]潘金勇. 锆合金薄板成形极限线的理论预测与数值模拟 [D].长沙:湖南大学,2018.
Pan J Y. Theoretical Research and Numerical Simulation of Forming Limit Line for Zirconium Alloy Sheet [D].Changsha: Hunan University,2018.
[2]何廷一,田鑫萃,李胜男,等.基于蜂群算法改进的BP神经网络风电功率预测 [J].电力科学与技术学报,2018,33(4):22-28.
He T Y, Tian X C, Li S N,et al. Improved BP neural network based on artificial bee colony algorithm for wind power prediction [J].Journal of Electric Power Science and Technology,2018,33(4):22-28.
[3]文怀兴,张斌,杨新妮,等.基于BP神经网络的单点渐进成形回弹预测 [J].热加工工艺,2018,47(15):109-112.
Wen H X, Zhang B, Yang X N, et al. Springback prediction of single point incremental forming based on BP neural network [J].Hot Working Technology,2018,47(15):109-112.
[4]张涛,樊文欣,朱芹,等.基于BP神经网络的连杆衬套强力旋压回弹量预测 [J].特种铸造及有色合金,2017,37(4):380-382.
Zhang T, Fan W X, Zhu Q, et al. Prediction of springback of conn-ecting rod bushing based on BP neural network [J].Special Casting & Nonferous Alloys,2017,37(4):380-382.
[5]王茁.新开轨道交通城市的客流预测与方法分析 [J].上海工程技术大学学报,2018,32(4):346-351.
Wang Z. Passenger volume flow prediction and method analysis of new rail transit cities [J].Journal of Shanghai University of Engineering Science,2018,32(4):346-351.
[6]田娥,孙建东,刘自萍,等.基于BP神经网络的弯管机回弹量预测 [J].现代制造工程,2016, (3):70-73.
Tian E, Sun J D, Liu Z P,et al. Bending machine springback prediction based on BP neural network [J].Modern Manufacturing Engineer,2016, (3):70-73.
[7]付泽. 典型汽车用板变形滞后回弹的试验研究及有限元分析 [D].北京:北京理工大学,2016.
Fu Z. Experimental Study and Finite Element Analysis on Time-dependent Springbak of Typical Automotive Sheets under Deforming [D].Beijing: Beijng Institute of Technology,2016.
[8]王智. 基于灰色理论和神经网络的弯曲回弹预测研究 [D].成都:西南交通大学,2013.
Wang Z. Research on the Prediction of The Bending Springback Based on Grey Theory and Neural Network Model [D].Chengdu:Southwest Jiaotong University,2013.
[9]王振,白杨,郝长利,等.基于BP神经网络的曲轴润滑特性全局优化 [J].小型内燃机与车辆技术,2018,47(4):42-48.
Wang Z, Bai Y, Hao C L, et al. Global optimization of crankshaft l-ubrication characteristics based on BP neural network [J].Small Internal Combustion Engine and Vehicle Technique,2018,47(4):42-48.
[10]汪倩. 基于Dynaform软件的高强钢矩形管绕弯成形模拟研究 [D].兰州:兰州交通大学,2018.
Wang Q. A Simulation Study of Rotary Draw Bending for Rectangular Section Tubes of High Strength Steel Based on Dynaform [D]. Lanzhou:Lanzhou Jiaotong University,2018.
[11]何平. 基于有限元分析的特种条带冲压模具数字化设计研究 [D].长沙:湖南大学,2018.
He P. Research on Digital Design of Stamping Die for Special Strip Based on Finite Element Analysis [D]. Changsha: Hunan University,2018.
[12]王小川,史峰,郁磊, 等. Matlab神经网络43个案例分析 [M].北京:北京航空航天大学出版,2013.
Wang X C, Shi F, Yu L, et al. 43 Case Analysis of Matlab Neural Network [M].Beijing:Behang University Press,2013.
[13]Zheng D, Qian Z, Liu Y, et al. Prediction and sensitivity analysis of long-term skid resistance of epoxy asphalt mixture based on GA-BP neural network [J]. Construction and Building Materials, 2018, 158: 614-623.
|