网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
核电用钢SA508Gr.4N两段式本构模型的建立及 管板终锻火次模拟
英文标题:Establishment of twostage constitutive model for SA508Gr.4N nuclear power steel and simulation of final forging for tube sheet
作者:曾志钦 李风雷 张卫文 何西扣 
单位:华南理工大学 
关键词:SA508Gr.4N钢 本构模型 大锻件 管板 终锻 
分类号:TG316.2
出版年,卷(期):页码:2020,45(4):1-13
摘要:

采用新一代核电材料SA508Gr.4N钢的真应力-真应变数据,建立了该材料基于物象的温度、应变及应变速率的两段式流变应力本构模型,引入了相关系数R及平均相对误差AARE,验证本构模型的预测能力,发现相关系数和平均相对误差分别为0.9915和5.06%。采用该本构模型进行二次开发,基于Fortran语言编写子程序嵌入DEFORM软件,结合SA508Gr.4N钢随温度变化的热导率及比热容等实测热物性参数,对核电关键零件管板大锻件的关键终锻火次,包括平锤头展宽、压平凸台及旋转压实3个子工艺进行了系统模拟,分析了在不同工艺参数下,热锻成形过程中的锻件温度场、应力场、等效应变场及最终成形性能,最后得到了合理的锻造工艺方案。

 

 Using the real stress-real strain data of the new generation for nuclear power material SA508Gr.4N steel, the two-stage flow stress constitutive model was established based on temperature, strain and strain rate of material. And the related coefficient R and the absolute average relative error AARE were introduced to verify the predictive ability of the constitutive model, which were found to be 0.9916 and 5.07%, respectively. Adopting the constitutive model for secondary development, subprograms based on Fortran language were written and embedded in DEFORM software. Combined with measured thermal property parameters such as thermal conductivity and specific heat capacity of SA508Gr.4N steel which changed with temperature, the key final forging of heavy forgings for tube sheet of nuclear power key parts were simulated systematically, including the three sub-processes: the flat hammer head widening, the flattening boss and the rotary compaction. The temperature field, the stress field, the equivalent strain field and the final forming performance of forgings under different process parameters during the hot forging process were analyzed. Finally, a reasonable forging process schem is obtained.

基金项目:
广东省自然科学基金团队资助项目(2015A030312003)
作者简介:
曾志钦(1994-),男,硕士研究生 E-mail:mezqzeng@scut.edu.cn 通讯作者:张卫文(1969-),男,博士,教授 E-mail:mewzhang@scut.edu.cn
参考文献:

 [1]Lee K H, Kim M C, Lee B S, et al. Analysis of the master curve approach on the fracture toughness properties of SA508Gr.4N NiMoCr low alloy steels for reactor pressure vessels[J]. Materials Science & Engineering:A, 2010,527(15):3329-3334.


[2]Kim M C, Park S G, Lee K H, et al. Comparison of fracture properties in SA508Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials[J]. International Journal of Pressure Vessels and Piping, 2015,131:60-66.

[3]Park S G, Lee K H, Min K D, et al. Influence of the thermodynamic parameters on the temper embrittlement of SA508Gr.4N NiCrMo low alloy steel with variation of Ni, Cr and Mn contents[J]. Journal of Nuclear Materials, 2012, 426(1-3):1-8.

[4]何西扣, 刘正东, 杨志强, 等. 核压力容器用SA5084N钢的奥氏体晶粒长大行为[J]. 金属热处理,2016, 41(6):4-7.

He X K, Liu Z D, Yang Z Q, et al. Austenite grain growth behavior of SA5084N steel for nuclear pressure vessel[J]. Heat Treatment of Metals, 2016, 41(6):4-7.

[5]刘宁, 刘正东, 何西扣, 等. 核压力容器用SA508Gr.4N钢加热过程中的奥氏体相变[J]. 金属热处理, 2017,42(3): 88-92.

Liu N, Liu Z D, He X K, et al. Austenite transformation during heating of SA508Gr.4N steel for nuclear pressure vessel[J]. Heat Treatment of Metals, 2017, 42(3): 88-92.

[6]杨志强, 刘正东, 何西扣,等. SA508Gr.4N钢的亚动态再结晶行为[J]. 金属热处理,2018, 43(1): 6-11.

Yang Z Q, Liu Z D, He X K, et al. Subdynamic recrystallization behavior of SA508Gr.4N steel[J]. Heat Treatment of Metals, 2018, 43(1): 6-11.

[7]杨志强, 刘正东, 何西扣, 等. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 8:88-95.

Yang Z Q, Liu Z D, He X K, et al. Thermal deformation behavior of SA508Gr.4N steel for reactor pressure vessels[J]. Journal of Materials Engineering, 2017, 8: 88-95.

[8]刘正东. 新一代核压力容器用SA508Gr.4N钢 [M].北京:冶金工业出版社,2018. 

Liu Z D. SA508Gr.4N Steel for A New Generation of Nuclear Pressure Vessels [M]. Beijing: Metallurgical Industry Press, 2018.

[9]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A:Physical Metallurgy and Materials, Science, 1991, 22(7):1545-1558.

[10]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

[11]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.

[12]王熠昕. 大型核电封头用钢20MnNiMo热塑性变形行为的研究及应用[D]. 重庆:重庆大学, 2012.

Wang Y X. Research and Application of Thermoplastic Deformation Behavior of 20MnNiMo Steel for Large Nuclear Power Head [D]. Chongqing: Chongqing University, 2012.

[13]王梦寒, 王根田, 岳宗敏, 等. 20MnNiMo钢热变形行为及基于物象的本构模型[J]. 上海交通大学学报, 2016,50(7):1041-1046.

Wang M H, Wang G T, Yue Z M, et al. Hot deformation behavior of 20MnNiMo steel and constitutive model based on object[J]. Journal of Shanghai Jiaotong University, 2016,50(7): 1041-1046.

[14]Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International, 2003,44(5): 8-14.

[15]柏阳, 吴玉程, 罗志勇, 等. 基于Arrhenius方程和BP神经网络的2024Al/Al18B4O33w复合材料热变形流变应力预测[J]. 锻压技术, 2019,44(8):168-176.

Bo Y, Wu Y C, Luo Z Y, et al. Prediction on hot deformation flow stress of 2024Al/Al18B4O33w composites based on Arrhenius equation and BP neural network [J]. Forging & Stamping Technology, 2019,44 (8): 168-176.

[16]薛永栋, 胡振志, 陈明. 特大型管板锻造工艺技术研究[J]. 热加工工艺, 2018,47(15):153-156.

Xue Y D, Hu Z Z, Chen M. Research on forging process technology of extra large tube sheets[J]. Hot Working Technology, 2018,47(15):153-156.

[17]Liu X R, Zhou X D. The forging penetration efficiency of C45 steel stepped shaft radial forging with GFM forging machine[J]. Advanced Materials Research, 2010, 154-155:593-596.

[18]栾谦聪, 董湘怀, 吴云剑. 基于经验法则的锻透深度计算公式推导与验证[J]. 模具技术, 2013, (3):1-6.

Luan Q C, Dong X H, Wu Y J. Derivation and verification of forging depth calculation formula based on empirical rule[J]. Mold Technology, 2013, (3):1-6.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9