[1]Lee K H, Kim M C, Lee B S, et al. Analysis of the master curve approach on the fracture toughness properties of SA508Gr.4N NiMoCr low alloy steels for reactor pressure vessels[J]. Materials Science & Engineering:A, 2010,527(15):3329-3334.
[2]Kim M C, Park S G, Lee K H, et al. Comparison of fracture properties in SA508Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials[J]. International Journal of Pressure Vessels and Piping, 2015,131:60-66.
[3]Park S G, Lee K H, Min K D, et al. Influence of the thermodynamic parameters on the temper embrittlement of SA508Gr.4N NiCrMo low alloy steel with variation of Ni, Cr and Mn contents[J]. Journal of Nuclear Materials, 2012, 426(1-3):1-8.
[4]何西扣, 刘正东, 杨志强, 等. 核压力容器用SA5084N钢的奥氏体晶粒长大行为[J]. 金属热处理,2016, 41(6):4-7.
He X K, Liu Z D, Yang Z Q, et al. Austenite grain growth behavior of SA5084N steel for nuclear pressure vessel[J]. Heat Treatment of Metals, 2016, 41(6):4-7.
[5]刘宁, 刘正东, 何西扣, 等. 核压力容器用SA508Gr.4N钢加热过程中的奥氏体相变[J]. 金属热处理, 2017,42(3): 88-92.
Liu N, Liu Z D, He X K, et al. Austenite transformation during heating of SA508Gr.4N steel for nuclear pressure vessel[J]. Heat Treatment of Metals, 2017, 42(3): 88-92.
[6]杨志强, 刘正东, 何西扣,等. SA508Gr.4N钢的亚动态再结晶行为[J]. 金属热处理,2018, 43(1): 6-11.
Yang Z Q, Liu Z D, He X K, et al. Subdynamic recrystallization behavior of SA508Gr.4N steel[J]. Heat Treatment of Metals, 2018, 43(1): 6-11.
[7]杨志强, 刘正东, 何西扣, 等. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 8:88-95.
Yang Z Q, Liu Z D, He X K, et al. Thermal deformation behavior of SA508Gr.4N steel for reactor pressure vessels[J]. Journal of Materials Engineering, 2017, 8: 88-95.
[8]刘正东. 新一代核压力容器用SA508Gr.4N钢 [M].北京:冶金工业出版社,2018.
Liu Z D. SA508Gr.4N Steel for A New Generation of Nuclear Pressure Vessels [M]. Beijing: Metallurgical Industry Press, 2018.
[9]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A:Physical Metallurgy and Materials, Science, 1991, 22(7):1545-1558.
[10]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[11]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[12]王熠昕. 大型核电封头用钢20MnNiMo热塑性变形行为的研究及应用[D]. 重庆:重庆大学, 2012.
Wang Y X. Research and Application of Thermoplastic Deformation Behavior of 20MnNiMo Steel for Large Nuclear Power Head [D]. Chongqing: Chongqing University, 2012.
[13]王梦寒, 王根田, 岳宗敏, 等. 20MnNiMo钢热变形行为及基于物象的本构模型[J]. 上海交通大学学报, 2016,50(7):1041-1046.
Wang M H, Wang G T, Yue Z M, et al. Hot deformation behavior of 20MnNiMo steel and constitutive model based on object[J]. Journal of Shanghai Jiaotong University, 2016,50(7): 1041-1046.
[14]Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International, 2003,44(5): 8-14.
[15]柏阳, 吴玉程, 罗志勇, 等. 基于Arrhenius方程和BP神经网络的2024Al/Al18B4O33w复合材料热变形流变应力预测[J]. 锻压技术, 2019,44(8):168-176.
Bo Y, Wu Y C, Luo Z Y, et al. Prediction on hot deformation flow stress of 2024Al/Al18B4O33w composites based on Arrhenius equation and BP neural network [J]. Forging & Stamping Technology, 2019,44 (8): 168-176.
[16]薛永栋, 胡振志, 陈明. 特大型管板锻造工艺技术研究[J]. 热加工工艺, 2018,47(15):153-156.
Xue Y D, Hu Z Z, Chen M. Research on forging process technology of extra large tube sheets[J]. Hot Working Technology, 2018,47(15):153-156.
[17]Liu X R, Zhou X D. The forging penetration efficiency of C45 steel stepped shaft radial forging with GFM forging machine[J]. Advanced Materials Research, 2010, 154-155:593-596.
[18]栾谦聪, 董湘怀, 吴云剑. 基于经验法则的锻透深度计算公式推导与验证[J]. 模具技术, 2013, (3):1-6.
Luan Q C, Dong X H, Wu Y J. Derivation and verification of forging depth calculation formula based on empirical rule[J]. Mold Technology, 2013, (3):1-6.
|