[1]Hwangbo Y, Song J H. Fatigue life and plastic deformation behavior of electrodeposited copper thin films[J]. Materials Science & Engineering: A, 2010, 527(9):2222-2232.
[2]Ran J Q, Fu M W, Chan W L. The influence of size effect on the ductile fracture in micro-scaled plastic deformation[J]. International Journal of Plasticity, 2013, 41(2):65-81.
[3]Meng B, Fu M W, Fu C M, et al. Ductile fracture and deformation behavior in progressive microforming[J]. Materials & Design, 2015,83(10):14-25.
[4]Cheng L D, Wang C J, Wang C J, et al. Size effects on plastic deformation behavior in micro radial compression of pure copper[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(9):2686-2691.
[5]Raulea L V, Goijaerts A M, Govaert L E, et al. Size effects in the processing of thin metals[J]. Journal of Materials Processing Technology, 2001, 115(1):44-48.
[6]Michel J F, Picart P. Size effects on the constitutive behaviour for brass in sheet metal forming[J]. Journal of Materials Processing Technology, 2003, 141(3):439-446.
[7]Gau J T, Principe C, Wang J. An experimental study on size effects on flow stress and formability of aluminm and brass for microforming[J]. Journal of Materials Processing Technology, 2007, 184(1-3):42-46.
[8]Peng Linfa, Liu Fang, Ni Jun, et al. Size effects in thin sheet metal forming and its elastic-plastic consititutive model[J]. Materials & Design, 2007,28(5):1731-1736.
[9]谭险峰.基于尺寸效应微成形表面层模型建立与模拟[J].热加工工艺,2013, 42(9): 118-121.
Tan X F. Creation and simulation of surface layer model in micro-forming based on size effect[J]. Hot Working Technology, 2013, 42(9):118-121.
[10]董湘怀,王倩,章海明,等.微成形中尺寸效应研究的进展[J].中国科学:技术科学,2013, (2): 115-130.
Dong X H, Wang Q, Zhang H M, et al. Progress in research on size effect in microforming[J]. Scientia Sinica: Technologica,2013, (2):115-130.
[11]邹章雄,项金钟,许思勇. Hall-Petch关系的理论推导及其适用范围讨论[J].物理测试,2012, (6): 13-17.
Zou Z X, Xiang J Z, Xu S Y. Theoretical derivation of Hall-Petch relationship and discussion of its applicable range[J]. Physics Examination and Testing, 2012, (6):13-17.
[12]范蓉,赵坤民,阮金华,等.脉冲电流下黄铜合金H70的力学性能和微观组织[J].东北大学学报:自然科学版,2016, (9): 1322-1326.
Fan R, Zhao K M, Ruan J H, et al. Mechanical properties and microstructures of brass alloy H70 subjected to pulse current[J]. Journal of Northeastern University: Natural Science, 2016, (9):1322-1326.
[13]李其亭,张祎,马东海,等.基于有限元法的矩形软波导抗振性能研究[J].光纤与电缆及其应用技术,2013, (3):21-24.
Li Q T, Zhang Y, Ma D H, et al. Research on the anti-vibration performance of flexible rectangular waveguide based on FEM[J]. Optical Fiber & Electric Cable and Their Applications, 2013, (3):21-24.
[14]黄莉榕.机载环境下雷达波导的疲劳特性分析[D].南京:南京理工大学,2010.
Huang L R. Analysis of Fatigue Property of Waveguide in Airborne Radar Environment[D]. Nanjing: Nanjing University of Science & Technology, 2010.
[15]刘春梅,刘郁丽,沈化文,等.H96黄铜双脊矩形波导管绕弯截面变形特征研究[J].航空材料学报,2013, (6):13-19.
Liu C M, Liu Y L, Shen H W, et al. Characteristics of cross section deformation of double-ridge rectangular tube of H96 brass in rotary draw bending process[J]. Journal of Aeronautical Materials, 2013, (6):13-19.
[16]黄华茂,黄德修,刘文.Si基SiO2波导芯层热应力的理论研究[J].半导体学报,2007, (9): 1459-1464.
Huang H M, Huang D X, Liu W. Analytical solutions for thermal stresses in the core of silica-on-silicon waveguide[J]. Chinese Journal of Semiconductors,2007, (9):1459-1464.
[17]梁铁柱,黄文华,朱四桃,等.一种无焊缝软圆波导仿真与测试[J].现代应用物理,2015, (3): 197-201.
Liang T Z, Huang W H, Zhu S T, et al. Simulation and test of a corrugated flexible circular waveguide without a soldering slot[J]. Modern Applied Physics,2015, (3): 197-201.
[18]刘晓燕,柳奎君,罗雷,等.工业纯钛等径弯曲通道变形过程中的孪生行为研究进展[J].稀有金属,2019,43(8):863-871.
Liu X Y, Liu Q J, Luo L, et al. Progress in research on twinning behavior of commercially pure titanium during equal channel angular pressing[J]. Chinese Journal of Rare Metals,2019,43(8):863-871.
|