摘要:
|
为了研究不同锻造工艺对Zr-4合金管材组织及性能的影响,基于1火次锻坯,分别在α相区、(α+β)相区和β相区进行2火次锻造,经历相同的淬火、挤压、轧制及热处理工序后,获得3种Φ63.5 mm×10.9 mm管坯,利用OM、SEM、TEM和EBSD分析了管材试样的显微组织,在静态高压釜中进行了500 ℃和400 ℃/10.3 MPa蒸汽腐蚀试验,借助室温、高温(380 ℃)拉伸试验,对比了试样的力学性能。结果表明:2火次采用低温α相区锻造工艺,可加大锻坯组织破碎程度,实现最终管材的晶粒组织细化,从而提高了拉伸性能;第二相粒子主要沿晶界分布,晶粒细化后形成更多晶界,明显增加了第二相粒子数量,也在一定程度上改善了其分布均匀性;同时,低温锻造下的坯料表层获得更大变形,密排六方结构的管材晶粒取向发生变化,耐腐蚀性能更优的试样的柱面法向垂直于管材轧制方向。第二相粒子和织构两个方面因素的共同作用,使得Zr-4合金管材的耐腐蚀性能显著提升。
|
In order to study the influences of different forging processes on microstructures and properties for Zr-4 alloy tubes, based on the primary forging billet, the secondary forging was conducted in α phase, (α+β) phase and β phase areas respectively, three kinds of Φ63.5 mm×10.9 mm tube billets were obtained after undergoing the same quenching, extrusion, rolling and heat treatment processes, and the microstructures of tube samples were analyzed by OM, SEM, TEM and EBSD. Then, the steam corrosion test at 500 ℃ and 400 ℃/10.3 MPa was conducted in static autoclave respectively, and the mechanical properties of samples were compared by the tensile tests at room temperature and high temperature (380 ℃). The results show that the second forging process in α phase area at low temperature increases the fracture degree of grains for forged billets and realizes the grain refinement of final tubes to enhance the tensile properties. In addition, the second phase particles are mainly distributed along the grain boundaries, and the grain refinement also forms more grain boundaries to increase the quantity of the second phase particles and improve the distribution uniformity to a certain extent. Meanwhile, the surface layer of billet forged at low temperature gets greater deformation, the grain orientation of hcp structure tube changes, and the normal direction for cylinder surface of sample with better corrosion resistance property is perpendicular to the rolling direction of tube. Thus, the comprehensive effects of the second phase particles and texture improve the corrosion resistance property of Zr-4 alloy tubes significantly.
|
基金项目:
|
国家科技重大专项(2015ZX06004-001)
|
作者简介:
|
储林华(1984-),男,工学博士,高级工程师,E-mail:chulinhuascu@163.com
|
参考文献:
|
[1]袁改焕,李恒羽,王德华. 锆材在核电站的应用及前景[J]. 稀有金属快报,2007,26(1):14-16. Yuan G H, Li H Y, Wang D H. Application of zirconium material for nuclear power station [J]. Rare Metal Express, 2007, 26(1):14-16. [2]周邦新,姚美意,李强,等. Zr-4合金薄板的织构和耐疖状腐蚀性能的关系[J]. 上海大学学报:自然科学版,2008,14(5):441-445. Zhou B X, Yao M Y, Li Q, et al. Relationship between nodular corrosion resistance and textures of zircaloy-4 strip [J]. Journal of Shanghai University: Nature Science Edition, 2008, 14(5): 441-445. [3]Zhou B X, Peng J C, Yao M Y, et al. Study of the initial stage and an anisotropic growth of oxide layers formed on zircaloy-4[A]. The 16th International Symposium on Zirconium in the Nuclear Industry[C]. Chengdu,2010. [4]Charquet D, Steinberg E, Millet Y. Influence of variations in early fabrication steps on corrosion, mechanical properties, and structure of zircaloy-4 products[A]. The 7th International Symposium on Zirconium in the Nuclear Industry[C]. Strasbourg, 1985. [5]Mardon J P, Charquet D, Senevat J. Optimization of PWR behavior of stressrelieved zircaloy-4 cladding tubes by improving the manufacturing and inspection process[A]. The 10th International Symposium on Zirconium in the Nuclear Industry[C]. Philadelphia,1994. [6]Schemel J H, Charquet D, Wadier J F. Influence of the manufacturing process on the corrosion resistance of zircaloy-4 cladding[A]. The 8th International Symposium on Zirconium in the Nuclear Industry[C]. Philadelphia,1989. [7]栾佰峰, 薛姣姣, 柴林江, 等. 冷却速率及杂质元素对锆合金βα转变组织的影响[J]. 稀有金属材料与工程, 2013, 42(12):2636-2640. Luan B F, Xue J J, Chai L J, et al. Effect of cooling rates and impurities on the microstructure of βα transformation in Zr alloys[J]. Rare Metal Materials and Engineering, 2013, 42(12): 2636-2640. [8]陈传明, 周邦新, 姚美意, 等. β相处理时冷却速率对Zr-4合金耐疖状腐蚀性能的影响[J]. 稀有金属材料与工程, 2016, 45(10):2703-2709. Chen C M, Zhou B X, Yao M Y, et al. Effect of β phase cooling rate on nodular corrosion resistance of zircaloy-4 alloy [J]. Rare Metal Materials and Engineering, 2016, 45(10): 2703-2709. [9]李佩志, 薛祥义, 杨芳林, 等. 加工热处理制度对Zr-4合金管材性能的影响[J]. 稀有金属材料与工程, 1995, 24(6):53-57. Li P Z, Xue X Y, Yang F L, et al. Influences of working process and heat treatment on the properties of zircaloy-4 [J]. Rare Metal Materials and Engineering, 1995, 24(6):53-57. [10]刘建章. 核结构材料[M].北京:化学工业出版社, 2007. Liu J Z. Nuclear Structural Materials[M].Beijing:Chemical Industry Press, 2007. [11]李颜, 张加霞. 基于ANNFEM法的Zr-4合金锻件晶粒组织研究[J]. 金属世界,2018, (2):37-40. Li Y, Zhang J X. Modeling of the forging of Zr-4 alloy by ANNFEM [J]. Metal World, 2018, (2): 37-40. [12]卫新民, 张兵, 储林华. 基于数值模拟的大型Zr-4合金铸锭锻造工艺优化[J]. 锻压技术, 2018, 43(5):11-16. Wei X M, Zhang B, Chu L H. Optimization of forging processes for large Zr-4 alloy ingot based on numerical simulation[J]. Forging & Stamping Technology,2018, 43(5): 11-16. [13]GB/T 228.1—2010, 金属材料拉伸试验第1部分:室温试验方法[S]. GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S]. [14]GB/T 228.2—2015, 金属材料拉伸试验第2部分:高温试验方法[S]. GB/T 228.2—2015, Metallic materials—Tensile testing—Part 2: Method of test at elevated temperature [S]. [15]ASTM G2/G2M—2011,Standard test method for corrosion testing of products of zirconium, hafnium, and their alloys in water at 680 (360 ℃) or in steam at 750 (400 ℃)[S]. [16]Maussner G, Steinberg E, Tenckhoff E, et al. Nucleation and growth of intermetallic precipitates in zircaloy-2 and zircaloy-4 and correlation to nodular corrosion behavior[A]. The 7th International Symposium on Zirconium in the Nuclear Industry[C]. Strasbourg,1985. [17]Schemel J H, Charquet D, Wadier J F. Influence of the manufacturing process on the corrosion resistance of zircaloy-4 fuel cladding[A]. The 8th International Symposium on Zirconium in the Nuclear Industry[C]. Philadelphia,1989. [18]Anada H, Herb B J, Nomoto K, et al. Effect of annealing temperature on corrosion behavior and ZrO2 microstructure of zircaloy-4 cladding tube[A]. The 11th International Symposium on Zirconium in the Nuclear Industry[C]. GarmischPartenkirchen, Germany,1996. [19]陈传明, 周邦新, 徐龙, 等. Zr-4合金疖状腐蚀与晶粒取向的关系[J]. 稀有金属材料与工程, 2016,45(12):3213-3217. Chen C M, Zhou B X, Xu L, et al. Relationship between nodular corrosion resistance and grain orientation of zircaloy-4 alloy [J]. Rare Metal Materials and Engineering, 2016,45(12): 3213-3217.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|