网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
动力电池方形铝壳变薄拉深数值模拟
英文标题:Numerical simulation on ironing of square aluminium case for power battery
作者:刘畅 赖兴华 王策 吴中旺 胡剑锋 何瑶 卢海武 吴尚 
单位:清华大学 苏州汽车研究院(相城) 无锡威唐工业技术股份有限公司 苏州星诺奇科技股份有限公司 浙江中泽精密科技有限公司 
关键词:动力电池 方形铝壳 变薄拉深 减薄率 冲压成形 
分类号:TG386.32
出版年,卷(期):页码:2020,45(5):61-69
摘要:
选取某方形锂电池铝壳为研究对象,基于冲压成形Dynaform软件开展变薄拉深成形工艺有限元数值模拟。首先,对板料进行3个方向的静态拉伸实验,获取材料的应力-应变曲线和3个方向的各向异性系数;其次,对板料进行极限减薄率实验,获取材料的最大减薄率;然后,基于Dynaform软件进行有限元建模,板料采用三维实体单元进行模拟,采用动态显式非线性有限元分析软件LSDYNA进行求解;最后,在Dynaform软件中分析计算结果。结果表明,变薄拉深模拟结果在形貌、厚度、高度、成形性等方面与实验结果吻合较好,验证了变薄拉深模拟方法的有效性,为锂电池铝壳的薄壁化提供了重要的虚拟预报和轻量化设计支持。
For the aluminum case of square lithium battery, the finite element numerical simulation of ironing was conducted by the stamping forming software Dynaform. Firstly, the static tensile tests of sheet metal under three directions were carried out, and the stress-strain curves and the anisotropy coefficients under three directions of material were obtained. Secondly, the ultimate thinning rate test of sheet metal was carried out, and the maximum thinning rate of material was obtained. Then, the finite element model was established based on software Dynaform, and the sheet metal was simulated by 3D solid element. Furthermore, the problem was solved by dynamic explicit nonlinear finite element analysis software LS-DYNA. Finally, the calculation results were analyzed by software Dynaform. The results show that the simulation results of ironing are in good agreement with the actual products in morphology, thickness, height and formability, and the validity of ironing simulation method is verified to provide an important virtual prediction and lightweight design support for thin-walled aluminium case of lithium battery.
基金项目:
江苏省科技成果转化专项资金项目(BA2016146);江苏省工业和信息产业转型升级专项资金省重大技术攻关项目(Z201905)
作者简介:
刘畅(1992-),男,硕士,工程师,E-mail:liuchang_just@163.com;通讯作者:赖兴华(1983-),男,博士,高级工程师,E-mail:ryanlai@vt-ind.com
参考文献:
[1]赵红伟, 陈潇凯, 林逸.电动汽车动力电池仓拓扑优化[J].吉林大学学报:工学版, 2009, 39 (4):846-850.
Zhao H W, Chen X K, Lin Y. Topology optimization of power battery cabin in electric vehicle [J].Journal of Jilin University: Engineering and Technology Edition, 2009, 39 (4):846-850.
[2]Kim S H, Kim S H, Huh H . Tool design in a multistage drawing and ironing process of a rectangular cup with a large aspect ratio using finite element analysis[J]. International Journal of Machine Tools and Manufacture, 2002, 42(7):863-875.
[3]Lin Q Q, Wang Z Z, Peng Y R, et al. An analytical solution of the subsequent drawing force on multistage deep drawing of cylindrical cup[J]. Key Engineering Materials, 2019, 794: 28-35.
[4]Kayhan E, Kaftanoglu B. Experimental investigation of nonisothermal deep drawing of DP600 steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1-4):695-706.
[5]Kardan M, Parvizi A, Askari A. Influence of process parameters on residual stresses in deepdrawing process with FEM and experimental evaluations[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(3):157.https://doi.org/10.1007/s40430-018-1085-9.
[6]Pacheco Matías, Celentano D, GarcíaHerrera Claudio, et al. Numerical simulation and experimental validation of a multistep deep drawing process[J]. International Journal of Material Forming, 2017, 10(1):15-27.
[7]Groche P, SchFer R, Justinger H, et al. On the correlation between crystallographic grain size and surface evolution in metal forming processes[J]. International Journal of Mechanical Sciences, 2010, 52(3):523-530.
[8]Irthiea I, Green G, Hashim S, et al. Experimental and numerical investigation on micro deep drawing process of stainless steel 304 foil using flexible tools[J]. International Journal of Machine Tools and Manufacture, 2014, 76:21-33.
[9]Takuda H, Mori K, Masuda I, et al. Finite element simulation of warm deep drawing of aluminium alloy sheet when accounting for heat conduction[J]. Journal of Materials Processing Technology, 2002, 120(1):412-418.
[10]胡兆国. 冲压成形工艺与模具设计[M]. 北京:机械工业出版社, 2015.
Hu Z G. Stamping Forming Technology and Mold Design [M]. Beijing:China Machine Press, 2015.
[11]张阳, 臧顺来, 郭翔,等. 基于数字散斑应变测量法的薄板各向异性力学性能研究[J]. 材料工程, 2012, (4):6-11.
Zhang Y, Zang S L, Guo X, et al. Anisotropy study of thin metallic sheets with strain measurement of digital speckle correlation [J]. Journal of Materials Engineering, 2012, (4):6-11.
[12]GB/T 228.1—2010, 金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[13]GB/T 4156—2007,金属材料薄板和薄带埃里克森杯突试验[S].
GB/T 4156—2007,Metallic materials—Sheet and strip—Erichsen cupping test [S].
[14]尹晓阳, 涂杰松, 段海涛,等. 表面润滑对6061铝合金板材成形性能的影响[J]. 塑性工程学报, 2018, 25(2):65-72.
Yin X Y, Tu J S, Duan H T, et al. Effect of surface lubrication on formability of 6061 aluminum alloy sheet [J]. Journal of Plasticity Engineering, 2018, 25(2):65-72.
[15]沈春锋, 孙刚, 王秀丽. 基于LSDYNA3D的圆筒件拉深过程的研究[J]. 船舶工程, 2018, 40(3):45-48.
Shen C F, Sun G, Wang X L. Research on the drawing process of cylindrical parts based on LSDYNA3D [J]. Ship Engineering, 2018, 40(3):45-48.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9