网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于积分分离PID神经元网络的电液位置同步控制算法
英文标题:Electro-hydraulic position synchronization control algorithm on integral separation PID neural network
作者:宋昭 刘震洲 石明礼 黄庆钊 
单位:明阳智慧能源集团股份公司 
关键词:伺服系统 位置同步 积分分离 PID神经元网络 同步精度 
分类号:TH137
出版年,卷(期):页码:2020,45(5):167-170
摘要:
针对金属加工成形设备中电液位置同步控制系统的非线性、时变性所引起的跟踪性能差、动态响应慢以及同步控制精度低等问题,以阀控非对称缸系统为研究对象,根据电液伺服系统工作原理,建立双缸位置同步控制模型,提出了一种前馈校正的积分分离PID神经元网络控制算法,并设计了双缸位置同步控制器进行仿真分析。仿真结果表明:该方法的运用能有效抑制设备运行过程中负载变化、环境温度变化以及液压元件本身非线性等因素的干扰,双缸位置同步误差能控制在0.1 mm以内,系统表现出良好的动态跟踪性能且调节时间短,较好地改善了传统控制方式的不足。
For the problems of poor tracking performance, slow dynamic response and low synchronization control precision caused by nonlinear and time-varying in the electro-hydraulic position synchronization control system of metal processing and forming equipment, taking the valve controlled asymmetric cylinder system as the researching object, the double-cylinder position synchronization control model was established based on the working principle of electro-hydraulic servo system, and the control algorithm of integral separation PID neural network after feedforward correction was proposed. Then, the double-cylinder position synchronization controller was designed, and its simulation analysis was conducted. The simulation result indicates that using this method restrains the interference effectively such as load changes, ambient temperature changes and non-linearity of hydraulic components during the equipment operation, and the double-cylinder position synchronization error is controlled within 0.1 mm. In addition, the system shows good dynamic tracking performance and short adjustment time to improve the shortcomings of traditional control method.
基金项目:
作者简介:
宋昭(1988-), 男, 硕士, 工程师,E-mail:song_zhao@126.com
参考文献:
[1]张洪坤. 液压伺服同步控制技术在模压式预弯机中的应用[D].秦皇岛:燕山大学, 2017.
Zhang H K. Hydraulic Servo Synchronous Control Technology in the Application of the Molded Prebending Machine [D]. Qin-huangdao: Yanshan University, 2017.
[2]许文斌, 谭建平, 曾全胜. 伺服液压系统负载敏感位置跟踪控制 [J].锻压技术,2018, 43(11): 99-104.
Xu W B, Tan J P, Zeng Q S. Position tracking control on loadsensing for servo hydraulic system [J].Forging & Stamping Technology, 2018, 43(11):99-104.
[3]王立新, 赵丁选, 刘福才, 等. 电液比例位置同步线性自抗扰控制[J]. 控制理论与应用, 2018, 35(11):1618-1625.
Wang L X, Zhao D X, Liu F C, et al. Linear active disturbance rejection control for electrohydraulic proportional position synchronous [J]. Control Theory & Applications, 2018, 35(11):1618-1625.
[4]汪飞雪, 薛雄伟,曹晓明,等. 双缸液压同步控制系统建模及仿真[J].锻压技术,2018,43(9):113-118.
Wang F X,Xue X W,Cao X M,et al. Modeling and simulating on hydraulic synchronization control system with double cylinders [J]. Forging & Stamping Technology,2018, 43(9):113-118.
[5]杨静. 板料折弯机电液比例位置同步控制系统的设计与分析 [D]. 天津:天津理工大学,2017.
Yang J. Design and Analysis of the Synchronous Control System of Electro Hydraulic Proportional Position of Sheet Metal [D]. Tianjin: Tianjin University of Technology, 2017.
[6]Ji Y D, Liu D Y, Guo Y P. Adaptive neural network based position tracking control for dualmaster/singleslave teleoperation system under communication constant time delays [J]. ISA Transactions, 2019, 93: 80-92.
[7]王春行. 液压控制系统 [M]. 北京: 机械工业出版社, 1995.
Wang C X. Hydraulic Control System [M]. Beijing: China Machine Press, 1995.
[8]邓飚, 苏文斌, 郭秦阳. 双缸电液位置伺服同步控制系统的智能控制 [J]. 西安交通大学学报, 2011, 45(11):85-90.
Deng B, Su W B, Guo Q Y. Intelligent control for electrohydraulic position servo synchronic control system with double cylinders [J]. Journal of Xi′an Jiaotong University, 2011, 45(11):85-90.
[9]李宜伦, 王胜辉, 郑洪, 等. 积分分离模糊PID算法在MPPT中的应用 [J]. 东北电力技术, 2018, 39(8):1-6.
Li Y L, Wang S H, Zheng H, et al. Application of integral separation fuzzy PID algorithm in MPPT [J]. Northeast Electric Power Technology, 2018, 39(8):1-6.
[10]冯勇. 现代计算机控制系统 [M]. 哈尔滨: 哈尔滨工业大学出版社,1996.
Feng Y. Modern Computer Control System [M]. Harbin: Harbin Industrial University Press, 1996.
[11]舒怀林. PID神经元网络及其控制系统 [M]. 北京:国防工业出版社, 2006.
Shu H L. PID Neural Network and Its Control System [M]. Beijing: National Defense Industry Press, 2006.
[12]赵垒. 基于单神经元的船舶航向保持自适应PID控制[D]. 广州: 华南理工大学, 2018.
Zhao L. Ship Coursekeeping Adaptive PID Control Based on Single Neuron [D]. Guangzhou: South China University of Technology, 2018.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9