网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Mn18Cr18N电渣重熔钢的热压缩工艺模拟与实验研究
英文标题:Simulation and experimental research on hot compression process for Mn18Cr18N ESR steel
作者:田继红 张学瑞 秦凤明 刘建生 陈慧琴 
单位:太原科技大学 中国一重集团有限公司 天津重型装备工程研究有限公司 
关键词:Mn18Cr18N电渣重熔钢 热压缩工艺 工艺流程 微观组织 力学性能 
分类号:TG306
出版年,卷(期):页码:2020,45(5):185-191
摘要:
采用数值模拟和工艺实验方法,研究了Mn18Cr18N高氮奥氏体不锈钢在单道次和多道次热压缩工艺过程中的微观组织演变及其对力学性能的影响。结果表明,总变形率均为60%的情况下,不同工艺流程获得的内部组织和力学性能有明显的区别。采用单道次大变形工艺,大变形区得到细小的再结晶晶粒组织,较少量的高温铁素体呈短棒状分散在原始晶界上,综合性能较好;采用道次间隔为5 s的较短时间的多道次压下量均等的小变形工艺,再结晶晶粒更加细小,但是再结晶体积分数较低,变形和组织的不均匀性显著,高温铁素体呈条状断续分布在原始晶界上,强度较高、塑性较差;采用在道次间1100 ℃保温和延长道次间隔时间为5 min的多道次压下量均等的小变形工艺,坯料整个截面上可以获得细小均匀的再结晶晶粒组织,极少量的高温铁素体呈颗粒状弥散分布在晶界上,强度高、塑性好。
Microstructure evolution and its influence on mechanical properties during the single-pass and multi-pass hot compression processes of Mn18Cr18N high nitrogen austenitic stainless steel were investigated by numerical simulation and experimental methods. The results show that internal microstructures and mechanical properties obtained by different process routes under the total reduction rate of 60% are obviously different. For the single-pass and large deformation process, the fined recrystallized grain microstructure is obtained in the large deformation area, and a small amount of high-temperature ferrite disperses on the original grain boundaries with short rod shape, which has better comprehensive performance. However, for the small deformation process with equal reduction of multiple passes in a short time with the pass interval time of 5 s, the recrystallized grains are smaller, the recrystallization volume fraction is lower, the unevenness of deformation and microstructure is significant, and the high-temperature ferrite is distributed intermittently on the original grain boundaries with strip shape, which causes high strength and poor plasticity. Furthermore, for the small deformation process with equal reduction of multiple passes at holding temperature of 1100 ℃ between passes and extended pass interval time of 5 min, the fine and uniform recrystallized grain structure is obtained on the whole section of billet, and a very small amount of high-temperature ferrite disperses on the grain boundaries with particle shape, which has high strength and better plasticity.
基金项目:
国家自然科学基金资助项目(51575372)
作者简介:
田继红(1971-),男,博士研究生,副教授,E-mail:tykdtjh@126.com;通讯作者:陈慧琴(1968-),女,博士,教授,E-mail:chenhuiqin@tyust.edu.cn
参考文献:
[1]Chen H Q, Wang Z X,Qin F M,et al. Hot deformation behavior and processing maps of ascast Mn18Cr18N steel[J]. Journal of Wuhan University of Technology: Mater. Sci. Ed.,2017,32(4):935-943.
[2]傅杰. 第二代电渣冶金技术与重大装备制造[J].材料与冶金学报, 2011, 10 (Z1):8-13.
Fu J. The second generation of electroslag metallurgy technology and major equipment manufacturing[J]. Journal of Materials and Metallurgy,2011, 10 (Z1):8-13.
[3]陈旭. 电渣重熔空心钢锭过程的数学模拟和试验研究[D].沈阳:东北大学, 2016.
Chen X. Mathematical Simulation and Experimental Research on ElectroslagRemelting Process of Hollow Ingot[D]. Shenyang:Northeastern University, 2016.
[4]Jang Y S,Ko D C, Kim B M. Application of the finite element method to predict microstructure evolution in the hot forging of steel[J]. Journal of Materials Processing Technology, 2000, 101(1-3):85-94.
[5]Sinczak J,Skubisz P, Pietrzyk M, et al. Analysis of microstructure evolution in the forging process of a windmill main shaft[J]. Steel Research International, 2006, 77(8):583-589.
[6]Du F S, Wang M T, Li X T. Research on deformation and microstructure evolution during forging of largescale parts[J]. Journal of Materials Processing Technology, 2007, 187-188:591-594.
[7]马秋,林忠钦,于忠奇.IN718合金多步锻造过程中微观组织演变数值模拟[J].上海交通大学学报, 2007,41 (4):629-633.
Ma Q, Lin Z Q, Yu Z Q. A numerical simulation ofmicrostructure evolution of IN718 alloy during multistep forging[J]. Journal of Shanghai Jiaotong University[J]. 2007,41 (4):629-633.
[8]Cho J R, Jeong H S, Cha D J, et al. Prediction of microstructural evolution and recrystallization behaviors of a hot working die steel by FEM[J]. Journal of Materials Processing Technology, 2005, 160(1):1-8.
[9]陈慧琴,刘建生, 郭会光. Mn18Cr18N钢热成形晶粒变化的模拟研究[J]. 金属学报, 1999,35(1):53-56.
Chen H Q, Liu J S, Guo H G. Simulation of microstructure evolution during hot forming of Mn18Cr18N retaining ring steel[J]. Acta Metallurgica Sinica, 1999,35(1):53-56.
[10]王振兴. 电渣重熔Mn18Cr18N奥氏体不锈钢热变形过程组织演变的研究[D].太原:太原科技大学,2017.
Wang Z X. Research on Microstructure Evolution of ESR Mn18Cr18N Austenitic Stainless Steel during Hot Deformation[D]. Taiyuan:Taiyuan University of Science and Technology, 2017.
[11]解婧陶,王钦娟,王璐银.奥氏体不锈钢321合金不同应变速率下动态再结晶分析[J].锻压技术,2019,44(6):178-182.
Xie J T,Wang Q J,Wang L Y. Dynamic recrystallization analysis on austenitic stainless steel 321 alloy atdifferent strain rates[J].Forging & Stamping Technology,2019,44(6):178-182.
[12]李景丹,刘建生,焦永星. 316LN钢亚动态再结晶行为[J].锻压技术,2019,44(8):176-181.
Li J D, Liu J S, Jiao Y X. Metadynamic recrystallization behavior of 316LN steel[J].Forging & Stamping Technology,2019,44(8):176-181
[13]Martin C M, Eric R N, Elliot L B, et al. Hot working and recrystallization of ascast 316L[J]. Metallurgical and Materials Transactions A, 2003, 34: 1683-1703.
[14]Martin C M, Eric R N, Elliot L B, et al. Hot working and recrystallization of ascast 317L[J]. Metallurgical and Materials Transactions A, 2003, 34: 3021-3041.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9