[1]罗词文. WFL机床人机交互故障诊断系统研究 [D]. 南京: 东南大学,2017.
Luo C W. Fault Diagnostic System of Human-computer Interaction of WFL Mill-turn [D]. Nanjing: Southeast University, 2017.
[2]吴冬敏, 邵剑平,芮延年. 基于蚁群算法和神经网络的数控机床故障诊断技术研究 [J]. 机械设计与制造,2013, (1):165-167.
Wu D M, Shao J P, Rui Y N. Research on CNC machine fault diagnosis based on ant colony algorithm and neural network [J]. Machinery Design & Manufacture, 2013, (1):165-167.
[3]Edrington B, Zhao B, Hansel A, et al. Machine monitoring system based on MTConnect technology [J]. Procedia CIRP,2014,22(1): 92-97.
[4]付振华, 丁杰雄,张信,等. 多传感器融合在数控机床故障诊断中的应用研究 [J]. 机械设计与制造,2014,(2):140-142.
Fu Z H, Ding J X, Zhang X, et al. Attempt on application of multi-sensor data fusion in fault diagnosis of CNC machine tools [J]. Machinery Design & Manufacture, 2014, (2):140-142.
[5]朱奕玮, 阎秋生, 路家斌,等. 基于剪切力特征的圆盘剪分切机故障监测方法 [J]. 锻压技术,2019,44(12):131-138.
Zhu Y W, Yan Q S, Lu J B, et al. Condition monitoring method for disc slitting machine based on shearing force characteristics [J]. Forging & Stamping Technology, 2019, 44(12): 131-138.
[6]曹莉, 唐玲,吴浩,等. 基于免疫神经网络的数控机床故障诊断研究 [J]. 机床与液压,2016,44(13):184-190.
Cao L, Tang L, Wu H, et al. Research on CNC machine tool fault diagnosis based on immune neural network [J]. Machine Tool & Hydraulics, 2016, 44(13):184-190.
[7]陈德道, 安虎平. 基于模糊故障树的数控机床故障诊断方法 [J]. 机床与液压,2015,43 (5):177-180.
Chen D D, An H P. Fault diagnosis method of CNC machine tool based on fuzzy fault tree [J]. Machine Tool & Hydraulics,2015,43 (5): 177-180.
[8]曹春平, 倪俊,李猛,等. 基于专家系统的压力机故障诊断系统 [P].中国,107272646,2017-10-20.
Chao C P, Ni J, Li M, et al. Press fault diagnosis system based on expert system [P]. China, 107272646,2017-10-20.
[9]张邦成, 伊晓静,王占礼,等. 利用置信规则库的数控机床伺服系统故障诊断 [J]. 振动、测试与诊断,2013,33(4): 694-700.
Zhang B C, Yi X J, Wang Z L, et al. Fault diagnosis of CNC machine servo system using confidence rule base [J]. Journal of Vibration, Measurement & Diagnosis, 2013,33 (4): 694-700.
[10]赵炯, 盛凡,周杰,等. 设备故障监测与诊断系统数据库设计 [J]. 机械设计与制造,2014,(5):155-158.
Zhao J, Sheng F, Zhou J, et al. Database design of equipment fault monitoring and diagnosis system [J], Machinery Design & Manufacture, 2014, (5):155-158
[11]张金萍, 白广彬. 基于主元分析与KNN算法的旋转机械故障识别方法 [J]. 机械设计与制造,2017,(6):23-25.
Zhang J P, Bai G B. Method of rotating machinery fault pattern recognition based on PCA and KNN algorithm [J]. Machinery Design & Manufacture, 2017,(6):23-25.
[12]林阳昊. 数控机床故障诊断专家系统设计 [D].成都:西华大学,2017.
Lin Y H. Design of Fault Diagnosis Expert System for Numerical Control Machine [D].Chengdu: Xihua University, 2017.
|