网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
双曲度蜂窝夹层结构高精度面板真空负压成形回弹预测
英文标题:Springback prediction on vacuum negative pressure forming for high precision panel of double-curvature sandwich structure with honeycomb core
作者:王明明 李东升 赵有磊 
单位:北京航空航天大学 
关键词:夹层面板 负压成形 大挠度弯曲 贴膜压力 回弹预测 
分类号:TG306
出版年,卷(期):页码:2020,45(7):41-45
摘要:

 针对双曲度蜂窝夹层结构面板真空负压成形的精度控制问题,建立了基于半解析、半数值模拟的回弹预测方法。首先,利用有限元方法建立了单层铝板的压贴分析有限元模型,获得了铝板大挠度弯曲时的膜应力。然后,结合薄板大挠度弯曲平衡方程求解单层铝板的临界贴模压力,并基于临界贴模压力建立了夹层结构面板真空负压成形的回弹预测有限元模型,从而实现对双曲度蜂窝夹层结构面板的回弹预测。最后,开展了夹层结构面板真空负压成形试验,有限元模拟和成形试验得到的面板型面精度偏差为9.3%,表明建立的回弹预测模型具有较高的预测精度。

 

 For the precision control problem of vacuum negative pressure forming for double-curvature sandwich structure panel with honeycomb core, a method of springback prediction was established based on semi-analytical and semi-numeric simulation. Firstly, the finite element model of compression analysis for single-layer aluminum plate was established by the finite element method, and the membrane stress of large deflection bending for aluminum plate was obtained. Then, the critical membrane pressure of single-layer aluminum plate was solved by the large deflection bending equilibrium equation of thin plate, and the finite element model of  springback prediction for vacuum negative pressure forming of sandwich structure panel was established by the critical membrane pressure, and the springback prediction of double-curvature sandwich structure panel with honeycomb core was accomplished. Finally, the vacuum negative pressure forming experiment of sandwich structure panel was carried out, and the deviation of surface accuracy for panel obtained by finite element simulation and forming experiment was 9.3%, which indicated that the established springback prediction model had higher prediction accuracy.

基金项目:
国家自然科学基金资助项目(51575028)
作者简介:
王明明(1989-),男,博士研究生 E-mail:bzwangmm@126.com 通讯作者:李东升(1965-),男,工学博士,教授 E-mail:lidongss@buaa.edu.cn
参考文献:

 [1]李东升, 周贤宾, 常和生,等.高精度反射器面板精密成形若干关键技术研究[J].中国机械工程,2003, 14(13): 1133-1135.


Li D S, Zhou X B, Chang H S, et al. Research on several key technologies of precision forming of high precision reflector panel [J]. China Mechanical Engineering, 2003, 14(13): 1133-1135.


[2]周贤宾, 陈连峰,李东升.反射器夹层面板精密成形原理[J].北京航空航天大学学报,2004, 30(4):296-300.


Zhou X B, Chen L F, Li D S. Principle of precision forming for sandwich panel of large antenna reflector [J]. Journal of Beihang University, 2004, 30(4)296-300.


[3]李志光, 李东升,郝长岭,等.大型夹层结构高精度反射器面板精密成形及型面稳定性[J].塑性工程学报,2009, 16(2): 78-81,123.


Li Z G, Li D S, Hao C L, et al. The research on surface stability of the forming of high precision for large and high precision reflecting panel [J]. Journal of Plasticity Engineering, 2009, 16(2): 78-81,123.


[4]Wang M M, Li D S, Zhou X B, et al. Design, fabrication and onsite alignment of lowcost reflector used in largescale compact antenna test range[A]. 2017 11th European Conference on Antennas and Propagation[C]. FranceIEEE2017.


[5]刘海燕, 金霞.板料成形的回弹预测方法研究[J]. 机械制造与自动化, 2008, 37(6):40-44.


Liu H Y, Jin X. Springback prediction method research of sheet metal forming [J]. Machine Building & Automation, 2008, 37(6)40-44.


[6]郭玉琴, 李富柱, 王小椿,等. 动力显式有限元与模拟退火相结合的回弹预测方法研究[J]. 中国机械工程, 200516(23):84-88.


Guo Y Q, Li F Z, Wang X C, et al. Study on springback prediction approach combining dynamicexplicit FEM with simulated annealing [J]. China Mechanical Engineering, 2005, 16(23) 84-88.


[7]孔敏, 胡伟, 莫健华,. 基于AUTOFORM的汽车顶棚冲压回弹评估及补偿研究[J]. 锻压技术, 2019, 44(8): 41-48.


Kong M, Hu W, Mo J H, et al. Research on evaluation and compensation of stamping springback for automobile roof based on AUTOFORM[J]. Forging & Stamping Technology, 2019, 44(8): 41-48.


[8]苏胜伟, 李纬民, 顾勇飞,. 小曲率板材弹塑性校正弯曲回弹分析[J]. 塑性工程学报, 2019, 26(3):197-202.


Su S W, Li W M, Gu Y F, et al. Springback analysis on elasticplastic bending of smaller curvature sheet metal[J]. Journal of Plasticity Engineering2019, 26(3): 197-202.


[9]Hao C, Zhou X, Li X. Solution to boundaryvalue problems in fabrication of highprecision reflector panels[J]. Chinese Journal of Aeronautics, 2009, 22(1):97-104.


[10]沈惠川. 再论弹性大挠度问题vonKármán方程与量子本征值问题Schrǒdinger方程的关系[J].应用数学和力学, 1987, 8(6):539-546.


Shen H C. Further study of the relation of vonKármán equation for elastic large deflection problem and Schrǒdinger equation for quantum eigenvalues problem [J]. Applied Mathematics and Mechanics, 1987, 8(6) 539-546.


[11]黄炎.弹性薄板理论[M].北京:国防大学出版社,1992.


Huang Y. The Theory of Elastic Thin Plate [M].Beijing: National University of Defense Press, 1992.


[12]陈连峰, 李东升,周贤宾,.高精度反射器面板柔性复合成形数值模拟[J].中国机械工程,2004,15(3): 248-251.


Chen L F, Li D S, Zhou X B, et al. Numerical simulation for flexible compound forming of high precision sandwich panels [J]. China Mechanical Engineering, 2004, 15 (3): 248-251.


[13]富明慧, 尹久仁.蜂窝芯层的等效弹性参数[J].力学学报,1999,31(1):113-118.


Fu M H, Yin J R. Equivalentelastic parameters of the honeycomb core [J] .Chinese Journal of Theoretical and Applied Mechanics, 1999,31 (1): 113-118.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9