网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车后桥壳冲压成形分析及实验研究
英文标题:Stamping analysis and experimental study on automobile rear axle housing
作者:胡义华 柳明 黄志超 涂林鹏 黄薇 张永超 
单位:1.江西江铃底盘股份有限公司 2.华东交通大学 
关键词:后桥壳 冲压成形 正交实验 压边力 冲压速度 
分类号:TH164
出版年,卷(期):页码:2020,45(7):71-88
摘要:

 针对汽车后桥壳实际冲压成形中存在的缺陷,基于DYNAFORM软件对后桥壳冲压成形过程进行数值模拟,分析了压边力、冲压速度对冲压成形的影响。设计了正交实验优化工艺参数,以最大减薄率为评价指标,选取冲压速度、压边力、摩擦系数、凹凸模间隙为因素。结果表明,各因素对最大减薄率影响的主次关系依次为冲压速度、摩擦系数、压边力、凹凸模间隙。最优成形工艺参数为:冲压速度为1000 mm·s-1、压边力为300 kN、摩擦系数为0.12、凹凸模间隙为6.2 mm。在最优工艺参数下,制件的最大减薄率为14.35%,最大增厚率为8.38%,模拟结果的成形质量良好,并进行实际的冲压成形实验,实际制件与有限元模拟结果相比,最大减薄率误差为7.65%,最大增厚率误差为0.6%。制件无破裂、起皱,表面质量良好,模拟结果与实验结果基本吻合。

 For the defects existing in the actually stamping of rear axle housing in automobile, the stamping process of rear axle housing was numerically simulated by software DYNAFORM, and the influences of blank holder force and stamping speed on stamping were analyzed. Then, taking the maximum thinning rate as the evaluation index, selecting stamping speed, blank holder force, friction coefficient and clearance between punch and die as the factors, the orthogonal experiment was designed to optimize the process parameters. The results show that the primary and the secondary relationship of influences for the various factors on the maximum thinning rate is stamping speed, friction coefficient, blank holder force and clearance between punch and die successively. The optimal forming process parameters are the stamping speed of 1000 mm·s-1, the blank holder force of 300 kN, the friction coefficient of 0.12 and the clearance between punch and die of 6.2 mm. Under the optimal process parameters, the maximum thinning rate of part is 14.35%, the maximum thickening rate is 8.38%, and the forming quality of simulation results is good. Finally, the actual stamping experiment was carried out. Compared with the finite element simulation results and the actual part, the error of the maximum thinning rate is 7.65%, and the error of the maximum thickening rate is 0.6%. Furthermore, the surface quality of parts is good without crack and wrinkle, and the simulation results are basically consistent with the experimental results.

基金项目:
江西省重点研发计划(20192BBEL50013, 20181BBE50011)
作者简介:
胡义华(1972-),男,硕士,高级工程师 E-mail:hyh@jlchassis.com 通讯作者:黄志超(1971-),男,博士,教授 E-mail:hzcosu@163.com
参考文献:

 [1]陈家瑞. 汽车构造[M],北京:机械工业出版社,2005.


Cheng J R. Automobile Structure[M]. Beijing: China Machine Press, 2005.


[2]于斌. 冲压焊接式驱动桥壳成形过程数值仿真研究[D].济南:山东大学,2007.


Yu B. Research on Numerical Simulation for the Process of BlankingWelding Drive Axle Housing[D]. Jinan:Shandong Univesity,2007.


[3]纪建奕, 戴永谦,王富强,等.重卡驱动桥壳一次冲压热成型仿真研究[J].节能技术,2018363:219-222.


Ji J Y, Dai Y Q, Wang F Q, et al. Simulation study on hot stamping forming of the drive axle house of heavy truck[J]. Energy Conservation Technology, 2018, 36 (3):219-222.


[4]徐肖, 黄涛,王震. 基于CAE的典型前围板下横梁冲压成形工艺[J].锻压技术,2019,448:26-34.


Xu X, Huang T, Wang Z. Stamping process of typical front beam connecting part based on CAE[J]. Forging & Stamping Technology,2019, 44(8): 26-34.


[5]龚红英. 板料冲压成形CAE实用教程[M].北京:化学工业出版社,2010.


Gong H Y. Sheet Metal Stamping CAE Practical Tutorial [M]. Beijing: Chemical Industry Press, 2010.


[6]李文平. 汽车顶盖前横梁拉延成形工艺数值模拟分析[J],塑性工程学报,2017242:118-121127.


Li W P. Numerical simulation analysis on drawing forming process of front cross member of automobile top cover[J]. Journal of Plasticity Engineering2017,24 (2):118-121,127.


[7]刘新东. 基于Dynaform汽车后桥壳成形过程数值模拟与优化[D].柳州:广西科技大学,2014.


Liu X D. Numerial Simulation and Optimization of Car Rear Axle Forming Processes Based on Dynaform [D]. Liuzhou: Guangxi University of Science and Technology, 2014.


[8]臧其其, 闫华军,张双杰,等.基于Dynaform的铝合金汽车地板梁成形分析及工艺参数优化[J]. 塑性工程学报,2019262:125-131.


Zang Q Q, Yan H J, Zhang S J, et al. Forming analysis and process parameters optimization for automobile aluminum alloy floor beam based on Dynaform [J]. Journal of Plasticity Engineering,2019,26 (2):125-131.


[9]张勇. 基于Dynaform技术和正交试验的引擎盖内板冲压工艺参数优化[J],锻压技术,2018434:64-69.


Zhang Y. Optimization on stamping process parameters of engine cover inner plate based on orthogonal test and Dynaform technology [J]. Forging Stamping Technology,2018,43 (4):64-69.


[10]刘建鹏, 王震虎,林启权,等. 基于正交试验的铝代钢冲压成形工艺参数优化[J]. 塑性工程学报,2018255:110-116.


Liu J P, Wang Z H, Lin Q Q, et al. Optimization of stamping process parameters for aluminum instead of steel based on orthogonal experiment[J]. Journal of Plasticity Engineering, 2018, 25 (5):110-116.


[11]朱超, 王雷刚,黄瑶. 基于CAE和灰色关联的汽车前门外板冲压成形工艺参数多目标优化[J].锻压技术,2018438:39-4370.


Zhu C, Wang L G, Huang Y. Multiobjective optimization of stamping process parameters of automobile front door outer panel based on CAE and grey relation analysis[J]. Forging & Stamping Technology, 2018, 43(8): 39-43,70.


[12]朱书建, 李健,林贤坤,等.基于正交试验法的T型三通管内高压成形仿真与优化[J].锻压技术,2018439:75-82.


Zhu S J, Li J, Lin X K, et al. Simulation and optimization on hydroforming of Tshape tube based on orthogonal experiment[J]. Forging & Stamping Technology, 2018, 43(9): 75-82.


[13]张勇, 范轶,薛洋. 基于Dynaform 和正交试验的轿车加强梁冲压工艺参数优化[J].锻压技术,2019442:37-41.


Zhang Y, Fan Y, Xue Y. Optimization on stamping process parameters of car reinforced beam based on Dynaform and orthogonal test[J].Forging & Stamping Technology,2019, 44(2):37-41.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9