网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
叶片辊轧机调整机构摩擦补偿控制策略
英文标题:Friction compensation control strategy for adjustment mechanism of blade rolling mill
作者:张瑜 王立新 陈洪月 毛君 
单位:安阳工学院 
关键词:辊轧机 调整机构 摩擦补偿 自适应模糊摩擦逼近法 全局滑模控制 
分类号:TG339
出版年,卷(期):页码:2020,45(7):148-152
摘要:

 针对非线性摩擦导致叶片辊轧机轧辊的左右调整机构调整精度降低的问题,提出一种基于自适应模糊摩擦逼近补偿的全局滑模控制策略。建立了含非线性摩擦模型的辊轧机左右调整机构动力学模型,基于改进的LuGre动态摩擦模型,采用自适应模糊摩擦逼近方法实现调整机构中摩擦的在线补偿,结合全局滑模控制保证系统在响应过程中具有一定的鲁棒性。利用Matlab/Simulink软件对控制过程进行跟踪仿真,并将本文控制策略应用于现场实际中,验证了本文方法的有效性,研究结果表明:控制策略可以实现系统轨迹的高精度追踪,本文方法可以很好地实现轧辊机左右调整机构的控制。

 

 For the problem that nonlinear friction caused the adjustment accuracy to decrease in the left and right adjustment mechanism of blade rolling mill, the global sliding mode control strategy based on adaptive fuzzy friction approximation compensation was proposed. Then, the dynamic model of left and right adjustment mechanism for rolling mill with nonlinear friction model was established, and based on the improved LuGre dynamic friction model,the online compensation of friction in the adjustment mechanism was realized by the adaptive fuzzy friction approximation method. Combined with the global sliding mode control, the system ensured to have a certain robustness in the response process, and the control process was tracked and simulated by software Matlab/Simulink. Furthermore, the control strategy was applied to the field reality to verify its validity. The results show that the control strategy realizes the high-precision tracking of system trajectories and the control of left and right adjustment mechanism of rolling mill.

基金项目:
河南省高等学校重点科研项目(19A460010
作者简介:
张瑜(1987-),男,博士,讲师 E-mail:z13464238735@sina.com
参考文献:

 [1]毛君, 孟辉,陈洪月,.叶片辊轧机高精度调整机构运动精度分析[J].机械设计与研究, 2015, 31(4):20-2326.


Mao J, Meng H, Chen H Y, et al. Kinematic accuracy analysis of high precision adjusting mechanism of blade rolling mill[J]. Journal of Machine Design and Research, 2015, 31(4): 20- 2326.


[2]郭丁旭, 姜乃晶,张舒,.含有LuGre摩擦并联机械臂的自适应控制[J].动力学与控制学报,2019,17(4):362-368.


Guo D X, Jiang N J, Zhang S, et al. Adaptive control of parallel manipulators with LuGre friction compensation[J]. Journal of Dynamics and Control,2019,17(4):362-368.


[3]王晓东, 焦宗夏.负载模拟器中的摩擦力及其补偿控制[J].中国机械工程,200314(6): 511- 513.


Wang X D, Jiao Z X. Friction and its compensation method in load simulatorl[J]. China Mechanical Engineering, 2003,14( 6): 511-513.


[4]Guo QYin J MYu Tet al. Saturated adaptive control of electrohydraulic actuator with parametric uncertainty and load disturbance[J]. IEEE Transactions on Industrial Electronics201764(10)7930-7941.


[5]于爽, 付庄,闫维新,等. 基于干扰观测器的惯性平台摩擦补偿方法[J]. 哈尔滨工业大学学报,200840(11)1830-1833.


Yu SFu ZYan W Xet al. Method of friction compensation based on disturbance observer in inertial platform[J]. Journal of Harbin Institute of Technology200840(11)1830-1833.


[6]刘栋, 梅雪松,张东升. 基于多采样率控制的伺服系统摩擦补偿研究[J]. 中国电机工程学报,201131(24) 111-117.


Liu DMei X SZhang D S. Friction compensator based on multirate control in servo drives system[J]. Proceedings of the Chinese Society for Electrical Engineering201131(24)111-117.


[7]吴跃飞, 马大为,姚建勇,等. 基于修正LuGre模型的自适应鲁棒控制在机电伺服系统中的应用[J]. 机械工程学报,201450(22)207-212.


Wu Y FMa D WYao J Yet al. Application of adaptive robust control in mechatronic servo system based on modified LuGre model[J]. Journal of Mechanical Engineering201450(22)207-212.


[8]Freidovich L. LuGremodelbased friction compensation [J]. IEEE Transactions on Control Systems Technology, 2010,18(1): 194-200.


[9]殷婷婷, 贾方秀,于纪言,.基于改进LuGre摩擦模型的双旋弹丸固定舵翼滚转位置鲁棒自适应控制算法[J].兵工学报,201940 (12): 2425-2432.


Yin T T, Jia F X, Yu J Y, et al. Robust adaptive control of roll position of fixed rudder for dualspin projectile with improved Lucre friction model[J]. Acta Armamentarii,201940 (12): 2425-2432.


[10]崔晶, 王思宇,楚中毅.高加速度运动系统的非线性摩擦前馈补偿控制[J].光学精密工程,2018,26(1):77-85.


Cui J, Wang S Y, Chu Z Y. Feedforward for compensation control of nonlinear friction high acceleration motion system[J]. Optics and Precision Engineering, 2018, 26(1):77-85.


[11]姜仁华, 刘闯,宁银行.雷达伺服系统的自适应摩擦力矩补偿控制策略[J].机械工程学报,20195518):187-194.


Jiang R H, Liu C, Ning Y H. Control strategy with adaptive friction torque compensation for radar servo system[J]. Journal of Mechanical Engineering20195518):187-194.


[12]徐济宣, 马辉.重型液压机执行器自适应滑模容错控制[J].锻压技术,2020,45(4):140-147.


Xu J X, Ma H. Adaptive sliding mode faulttolerant control of actuator for heavyduty hydraulic press[J]. Forging & Stamping Technology,2020,45(4):140- 147.


[13]Karnik N N, Mendel J M. Centroid of type-2 fuzzy set[J]. Inform. Sci., 2001,132 (4):195-220.


[14]刘金坤. 滑膜变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.


Liu J K. MATLAB Simulation for Sliding Mode Control[M]. Beijing: Tsinghua University Press,2005.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9