摘要:
|
提出大尺度薄壁曲面整体构件流体压力成形新技术,建立了曲面薄壳流体压力成形理论模型,分析了材料参数、几何参数对流体压力的影响规律,采用能量法解析出临界起皱应力,获得了厚径比、流体压力对临界起皱应力的影响规律;通过工艺实验建立了流体压力成形工艺窗口,验证了临界流体压力预测的正确性。开展了3 m级薄壁曲面构件流体压力成形工艺仿真,分析了加载路径对反胀区形状、应力的影响,获得了合理的流体压力;研发出世界上最大的数控流体压力成形装备,最大成形力为150 MN,流体体积为5 m3。开展了大型铝合金薄壁曲面构件(厚径比<2‰)的成形工艺研制,在国际上首次采用厚度与构件相同的铝合金薄板直接成形3 m级整体薄壁曲面构件。
|
The innovative technology of hydroforming for integrated thin-walled curved parts with large size was proposed, and the theoretical model of hydroforming was built for thin-walled curved parts. Then, the influence laws of material and geometrical parameters on the fluid pressure were analyzed, and the influence laws of the ratio of thickness to diameter and the fluid pressure on the critical wrinkle stress were obtained by using energy method to analyze the critical winkle stress. Furthermore, the process window of hydroforming was built by experiments to verify the correctness of critical fluid pressure prediction, and the influences of loading paths on the shape and stress of reverse bulging region were analyzed by simulating the hydroforming process of thin-walled curved part with 3 m in diameter to obtain the optimal fluid pressure. Finally, the CNC hydroforming machine was developed with the maximum drawing force of 150 MN and the liquid volume of 5 m3, which was the biggest one in the world. Thus, the research on hydroforming process was conducted for large thin-walled curved part of aluminum alloy with the ratio of thickness to diameter lower than 2‰, and an integral thin-walled curved part with 3 m in diameter was directly formed for the first time in the world by the aluminum alloy plate with the thickness as same as the final component.
|
基金项目:
|
国家重点研发计划(2017YFB0306304);国家自然科学基金重点项目(U1637209)
|
作者简介:
|
刘伟(1977-),男,博士,教授,E-mail:liuw@hit.edu.cn
|
参考文献:
|
[1]苑世剑. 薄壁整体构件液体介质压力成形技术[J]. 国防制造技术, 2009, 3(1):55-57. Yuan S J. Fluid medium pressure forming technology on thin-walled integral component[J]. Defense Manufacturing Technology, 2009, 3(1):55-57. [2]刘欣,王国庆,李曙光,等. 重型运载火箭关键制造技术发展展望[J]. 航天制造技术, 2013, (1): 1-6. Liu X, Wang G Q, Li S G, et al. Forecasts on crucial manufacturing technology development of heavy lift launch vehicle[J]. Aerospace Manufacturing Technology, 2013, (1): 1-6. [3]李宝蓉,张丽娜. H-2B运载火箭贮箱制造技术与应用[J]. 航天制造技术, 2008,10(5):35-37. Li B R, Zhang L N. Manufacture technology and application on launch vehicle tank of H-2B[J]. Aerospace Manufacturing Technology, 2008, 10(5):35-37. [4]杨剑,李新和,易兆祥,等. 2250 mm薄壁封头外环约束无模旋压的壁厚精度 [J].锻压技术,2019,44(3):59-64. Yang J,Li X H,Yi Z X,et al. Wall thickness accuracy of 2250 mm thin-walled head by dieless spinning with outer ring restrainning [J]. Forging & Stamping Technology,2019, 44(3):59-64. [5]侯令华,李新和,俞大辉,等. 薄壁曲面构件旋压成形工艺[J].锻压技术,2018,43(11):59-65. Hou L H,Li X H,Yu D H,et al. Spinning process for thin-walled spherical part [J]. Forging & Stamping Technology,2018, 43(11):59-65. [6]田恕,李继光,张杰刚,等. 大尺寸薄壁瓜瓣构件的充液成形技术研究与应用 [J].锻压技术,2019,44(1):68-72. Tian S,Li J G,Zhang J G,et al. Research and application on hydroforming technology for large thin-walled scalloped segment component [J]. Forging & Stamping Technology,2019, 44(1):68-72. [7]张杰刚,李继光,周超,等. 拉形轨迹对铝合金贮箱箱底瓜瓣拉形成形的影响 [J]. 锻压技术,2019,44(10):29-33. Zhang J G,Li J G,Zhou C,et al. Influence of stretch forming trajectory on stretch forming of melon shaped bottom for aluminum alloy tank [J]. Forging & Stamping Technology,2019,44(10):29-33. [8]Yossifon S, Tirosh J, Kochavi E. On suppression of plastic buckling in hydroforming processes[J]. International Journal of Mechanical Sciences, 1984, 26(6): 389-402. [9]Yossifon S, Tirosh J. Buckling prevention by lateral fluid pressure in deep-drawing[J]. International Journal of Mechanical Sciences,1985, 27(3): 177-185. [10]Yuan S J, Fan X B. Developments and perspectives on the precision forming processes for ultra-large size integrated components[J]. International Journal of Extreme Manufacturing, 2019, 1(2): 022002. [11]Chen Y Z, Liu W, Zhang Z C, et al. Analysis of wrinkling during sheet hydroforming of curved surface shell considering reverse bulging effect[J]. International Journal of Mechanical Sciences, 2017, 20:70-80. [12]刘伟, 徐永超, 陈一哲, 等. 薄壁曲面整体构件流体压力成形起皱机理与控制[J]. 机械工程学报, 2018, 54(9):37-44. Liu W, Xu Y C, Chen Y Z, et al. Mechanism and controlling of wrinkles during hydroforming of integral thin-walled curved shell[J]. Journal of Mechanical Engineering, 2018, 54(9):37-44. [13] 苑世剑, 刘伟, 徐永超. 板材液压成形技术与装备新进展[J]. 机械工程学报, 2015, 51(8):20-28. Yuan S J, Liu W, Xu Y C. New development on technology and equipment of sheet hydroforming[J]. Journal of Mechanical Engineering, 2015, 51(8): 20-28. [14] Cao J. Prediction of plastic wrinkling using the energy method[J]. Journal of Applied Mechanics, 1999, 66(3): 646-652. [15] Kim J B, Yoon J W, Yang D Y, et al. Investigation into wrinkling behavior in the elliptical cup deep drawing process by finite element analysis using bifurcation theory[J]. Journal of Materials Processing Technology, 2001, 111(1-3): 170-174.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|