铝合金异形截面大型环件胀形工艺及优化
|
英文标题:Bulging technology and optimization on large ring with shaped section of aluminum alloy |
作者:魏辉 兰箭 |
单位:武汉理工大学 |
关键词:铝合金 异性截面 冷胀形 应力分析 应变均匀性 |
分类号:TG386 |
出版年,卷(期):页码:2020,45(8):94-98 |
摘要:
|
针对2219铝合金5 m级异形截面机匣环锻件,展开冷胀形工艺分析和优化,以达到使环件直径扩大至目标尺寸且使环件各部分的应变均匀性提高的目的。设计了环件的冷胀形工艺,并利用Deform-3D对环件冷胀形工艺进行有限元分析,提取有限元分析结果,并在环件不同位置做应力分析,得出了冷胀形工艺下环件的变形特点和变形规律;结合环件冷胀形工艺的变形特点,对原有胀形工艺进行优化,提高了环件各部分的应变均匀性,并通过实际的胀形工艺实验验证了工艺的有效性。另外,设计了环件胀形时瓣模转动的方案,使环件变形得到优化,优化后的胀形工艺使环件各区域的应变均匀性有了较大提升,为2219铝合金5 m级异形截面机匣环锻件冷胀形工艺提供了一个可靠的理论分析和优化方案。
|
For the five-meter casing ring forgings with shaped section of 2219 aluminum alloy, the cold bulging process analysis and optimization were carried out to enlarge the diameter of ring to the target size and improve the strain uniformity of each part of ring. Then, the cold bulging technology of ring was designed, and the cold bulging process of ring was analyzed by Deform 3D. Furthermore, the finite element analysis results were extracted, the stress analysis at different locations of ring was conducted, and the deformation characteristics and the deformation rule of ring in the cold bulging process were obtained. Combined with the deformation characteristics of cold bulging technology for ring, the original bulging process was optimized to improve the strain uniformity of each part of ring, and the effectiveness of the process was verified by the actual bulging process experiments. Finally, when the ring was bulged, the split mold rotation scheme was designed to achieve the deformation optimization of ring. And the optimized bulging process greatly improves the strain uniformity of each area of ring, which provides a reliable theoretical analysis and optimization scheme for the cold bulging process of five-meter casing ring forgings with shaped section of 2219 aluminum alloy.
|
基金项目:
|
国家自然科学基金面上项目(51975439)
|
作者简介:
|
魏辉(1995-),男,硕士研究生,E-mail:huiw95@126.com;通讯作者:兰箭(1972-),男,博士,教授,E-mail:jlan@whut.edu.cn
|
参考文献:
|
[1]Lan J, Shen X, Liu J, et al. Strengthening mechanisms of 2A14 aluminum alloy with cold deformation prior to artificial aging[J]. Materials Science and Engineering: A, 2018,745:517-535. [2]Vyletel G M, Aken D C V, Allison J E. The effect of matrix microstructure on cyclic response and fatigue behavior of particle-reinforced 2219 aluminum: Part II behavior at 150 ℃[J]. Metallurgical & Materials Transactions A, 1995, 26(12): 3155-3162. [3]阳代军,张文学,徐坤和,等.9 m级超大直径2219铝合金整体环轧制工艺及质量分析[J]. 热加工工艺,2019, 48(5):189-193. Yang D J, Zhang W X, Xun K H, et al. Rolling process and quality analysis of 9 m ultra-large diameter 2219 aluminum alloy integral ring[J]. Hot Working Technology, 2019, 48(5):189-193. [4]齐会萍, 李永堂, 华林, 等. 环形零件辗扩成形工艺研究现状与发展趋势[J]. 机械工程学报, 2014, 50(14):75-80. Qi H P, Li Y T, Hua L, et al. Research status and developing trends on the rolling forming process of ring parts[J]. Journal of Mechanical Engineering,2014,50 (14): 75-80. [5]刘兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705-1715. Liu B, Peng C Q, Wang R C, et al. Recent development and prospects for giant plane aluminum alloys [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705-1715. [6]华林,黄兴高, 朱春东. 环件轧制理论和技术[M].北京: 机械工业出版社, 2001. Hua L,Huang X G,Zhu C D. Ring Rolling Theory and Technology[M]. Beijing: China Machine Press,2001. [7]华林, 钱东升, 邓加东, 等. 超大型环件轧制理论与技术[J]. 锻压技术, 2018, 43(7):17-31. Hua L, Qian D S, Deng J D, et al. Theory and technology of super-large ring rolling [J]. Forging & Stamping Technology, 2018, 43(7):17-31. [8]高锦张,陈文琳,贾俐俐. 塑性成形工艺与模具设计 [M].第3版. 北京:机械工业出版社, 2015. Gao J Z, Chen W L, Jia L L. Plastic Forming Process and Die Design[M]. The 3rd Edition. Beijing: China Machine Press,2015. [9]黄天佑.材料加工工艺[M].北京:清华大学出版社,2004. Huang T Y, Material Processing Technology[M]. Beijing: Tsinghua University Press,2004. [10]郭良刚, 高冰, 杨合. 一种钛合金等厚薄壁异形环件轧胀复合成形方法[P].中国:CN201510311992.4,2015-11-11. Guo L G, Gao B, Yang H. The invention relates to a rolling and swelling composite forming method for special-shaped rings with equal thickness and thin wall of titanium alloy[P].China: CN201510311992.4,2015-11-11. [11]肖石霞, 郭扬. 大型风电轴承环成形方法探索[J]. 重型机械, 2015, (3):12-15. Xiao S X, Guo Y. Exploration of wind power bearing ring forming [J]. Heavy Machinery, 2015, (3):12-15. [12] 江道,易幼平,黄始全. 2A70铝合金环件胀形强化微观机制的试验研究[J]. 热加工工艺, 2017, 46(20): 75-78. Jiang D, Yi Y P, Huang S Q. Experiment study on bulging strengthening microscopic mechanism of 2A70 aluminum alloy ring [J]. Hot Working Technology, 2017, 46(20): 75-78.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|