网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于克里金模型和遗传算法的铝合金高筋薄壁锻件多目标优化
英文标题:Multiobjective optimization on thin-walled forgings with high rib of aluminum
作者:骆静 尹小燕 
单位:成都理工大学 
关键词:铝合金 高筋薄壁锻件 克里金模型 多目标遗传算法 成形均匀性 
分类号:TG316
出版年,卷(期):页码:2020,45(10):20-26
摘要:

 以数值模拟和智能算法为手段,以某高筋、薄壁、带有纵横内筋的铝合金锻件为研究对象,将其成形过程中的坯料高宽比、坯料温度、成形速度以及摩擦系数作为设计变量,将填充性能、组织流线、成形均匀性作为优化目标,利用克里金模型构建坯料高宽比、坯料温度、成形速度、摩擦系数与填充性能、组织流线、成形均匀性之间的高度非线性关系。利用多目标遗传算法(NSGAII),对克里金模型进行寻优得到Pareto解集,均衡考虑实际工艺条件,选取了一组比较均衡的最优解进行工艺试制。结果表明:优化结果能够显著地提升应变均匀性和填充性能,并改善流线分布。

 By means of numerical simulation and intelligent algorithms, for thin-walled forgings with vertical and horizontal high ribs of aluminium alloy, taking the ratio of blank height to width, the blank temperature, the forming speed and the friction coefficient in the forming process as the design variables, and taking the filling performance, the organization streamline and the forming uniformity as the optimization objectives, the highly nonlinear relationships between the design variables and the optimization objectives were constructed by the Kriging model. Then, the Kriging model was optimized to obtain Pareto solution set by the multi-objective genetic algorithm (NSGA-II). Furthermore, considering the actual process conditions, a group of relatively balanced optimal solutions were selected for the trial production. The results show that the optimized results significantly improve strain uniformity, filling performance and streamline distribution. 

基金项目:
四川省教育厅自然科学研究项目(17ZB0061);成都理工大学工程技术学院科研基金(C122018011)
作者简介:
骆静(1983-),男,硕士,讲师 E-mail:luojing19831219@163.com
参考文献:

 
[1]傅爱杰, 付应乾,罗震宇,等. 铝合金薄壁柱壳电磁胀形塑性失稳实验研究
[J].塑性工程学报,2018,25(1):85-91.


Fu A J,Fu Y Q,Luo Z Y,et al. Experimental study on plastic instability of electromagnetic bulging for thinwalled aluminum alloy cylinder
[J]. Journal of Plasticity Engineering,2018,25(1):85-91.


[2]曾元松, 黄遐. 大型整体壁板成形技术
[J]. 航空学报, 2008, 29(3): 721-727.

Zeng Y S,Huang X. Forming technologies of large integral panel
[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):721-727.


[3]汪建强, 郭丽丽, 李永兵, 等. 6016铝合金板材室温成形性及其数值模拟
[J]. 塑性工程学报, 2018, 25 (2): 43-51.

Wang J Q, Guo L L, Li Y B, et al. Formability and numerical simulation of 6016 aluminum alloy sheet at room temperature
[J]. Journal of Plasticity Engineering, 2018, 25 (2): 43-51.


[4]黄晓艳, 刘波. 轻合金是武器装备轻量化的首选金属材料
[J]. 轻合金加工技术, 2007,(1):12-15. 

Huang X Y, Liu B. Light alloy is the preferred metal material for weapon equipment lightweight
[J]. Light Alloy Fabrication Technology, 2007,(1):12-15.


[5]徐雪峰, 邱泽宇, 华如雨, 等. 内压与相对壁厚对薄壁管材弯曲成形的影响
[J]. 塑性工程学报, 2018, 25(6): 77-84.

Xu X F, Qiu Z Y, Hua R Y, et al. Influence of internal pressure and relative wall thickness on thinwalled tube bending forming
[J]. Journal of Plasticity Engineering, 2018, 25(6): 77-84.


[6]高文静, 雷君相,郭丰伟. 薄壁毂齿形径向成形工艺研究
[J].塑性工程学报,2018,25(3):73-80. 

Gao W J, Lei J X, Guo F W. Research on radial forming process of thinwalled hub tooth
[J]. Journal of Plasticity Engineering,2018,25(3):73-80.


[7]Zhang Y Q, Jiang S Y, Zhao Y N, et al. Isothermal precision forging of aluminum alloy ring seats with different preforms using FEM and experimental investigation
[J]. International Journal of Advanced Manufacturing Technology, 2014, 72: 1693-1703.


[8]张玉勋, 易幼平, 李云. 铝合金机轮轮毂锻造流线仿真与实验研究
[J]. 中南大学学报:自然科学版, 2011, 40(7): 1967-1972.

Zhang Y X, Yi Y P, Li Y. Simulation and experiment research on forging flow lines for aluminum alloy wheelhub
[J]. Journal of Central South University: Natural Science Edition, 2011, 40(7): 1967-1972.


[9]Shan D B, Xu W C, Si C H. Research on local loading method for an aluminumalloy hatch with cross ribs and thin webs
[J]. Journal of Materials Processing Technology, 2007, 187: 480-485.


[10]Park J J, Hwang H S. Preform design for precision forging of an asymmetric ribweb type component
[J]. Journal of Materials Processing Technology, 2007, 187-188: 595-599.


[11]孙志超, 杨合, 李志燕. TA15合金H型构件等温局部加载成形工艺研究
[J]. 稀有金属材料与工程, 2009, 38(11): 1904-1909.

Sun Z C, Yang H, Li Z Y. Hshaped component isothermal local loading forming of TA15 titanium alloy
[J]. Rare Metal Materials and Engineering, 2009, 38(11): 1904-1909.


[12]易幼平, 刘超, 黄始全. 基于DEFORM-3D的7050铝合金动态再结晶元胞自动机模拟
[J]. 中南大学学报:自然科学版, 2010, 41(5): 1814-1820.

Yi Y P, Liu C, Huang S Q. Simulation of dynamic recrystallization for 7050 aluminium alloy on platform of DEFORM-3D using cellular automaton
[J]. Journal of Central South University: Natural Science Edition, 2010, 41(5): 1814-1820.


[13]Yi Y P, Fu X, Cui J D, et al. Prediction of grain size for largesized aluminium alloy 7050 forging during hot forming
[J]. Journal of Central South University of Technology, 2008, 15: 1-5.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9