[1]沈华龙, 吴运新,郭俊康. 高强度铝合金厚板振动时效工艺的研究 [J]. 振动与冲击, 2009, 28(8): 191-194.
Shen H L, Wu Y X, Guo J K. VSR technology used in high intensity aluminum alloy thick plates [J]. Journal of Vibration and Shock, 2009, 28(8): 191-194.
[2]陶春, 袁海洋,胡永会. 振动时效在低合金高强钢焊接板中的应用 [J]. 热加工工艺, 2012, 41(15): 208-209.
Tao C, Yuan H Y, Hu Y H. Application of VSR in welded sheet of lowalloy highstrength steel [J]. Hot Working Technology, 2012, 41(15): 208-209.
[3]廖凯, 吴运新,郭俊康. 振动时效在铝合金厚板应力消减中的局限与应用 [J]. 振动与冲击, 2012, 31(14): 70-73.
Liao K,Wu Y X,Guo J K.Application of VSR technique in stress reduction of aluminum alloy thick plate and its limitation [J]. Journal of Vibration and Shock,2012,31 (14): 70-73.
[4]陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响 [J]. 工程科学学报, 2019, 41(7): 929-939.
Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials [J]. Chinese Journal of Engineering, 2019, 41(7): 929-939.
[5]Shen Z, Arioka K, LozanoPerez S. A mechanistic study of SCC in Alloy 600 through highresolution characterization [J]. Corrosion Science, 2018, 132: 244-259.
[6]Alvarez M G, Lapitz P, Ruzzante J. Analysis of acoustic emission signals generated from SCC propagation [J]. Corrosion Science, 2012, 55: 5-9.
[7]Zhou N, Pettersson R, Lin Peng R, et al. Effect of surface grinding on chloride induced SCC of 304L [J]. Materials Science and Engineering: A, 2016, 658: 50-59.
[8]Masuda H. SKFM observation of SCC on SUS304 stainless steel [J]. Corrosion Science, 2007, 49(1): 120-129.
[9]廖凯, 熊冠华,朱家豪,等. 振动时效对7075铝合金薄壁构件应力松弛的影响与分析 [J]. 振动与冲击, 2019, 38(1): 265-270.
Liao K, Xiong G H, Zhu J H, et al. Effects of vibratory stress relief on stress relaxation of 7075 Al alloy thinwalled components [J]. Journal of Vibration and Shock, 2019, 38(1): 265-270.
[10]刘晓丹, 陶兴华,韩振强. 振动时效工艺在消除膨胀波纹管残余应力中的应用 [J]. 振动与冲击, 2015, 34(4): 171-174.
Liu X D, Tao X H, Han Z Q. Application of vibratory stress relief in relaxation of residual stress for expandable corrugated liners [J]. Journal of Vibration and Shock, 2015, 34(4): 171-174.
[11]王哲, 李新和,刘舜尧,等. 超声振动对材料流变行为的影响机制 [J]. 塑性工程学报, 2012, 19(2): 38-42.
Wang Z, Li X H, Liu S Y, et al. Influence principle of ultrasonic vibration on the rheological behavior of materials [J]. Journal of Plasticity Engineering, 2012, 19(2): 38-42.
[12]刘艳雄, 华林. 高强度超声波辅助塑性加工成形研究进展 [J]. 塑性工程学报, 2015, 22(4): 8-14.
Liu Y X, Hua L. Review of study on highintensity ultrasonic vibrations assisted plastic deformation process [J]. Journal of Plasticity Engineering, 2015, 22(4): 8-14.
[13]王仕全. 轻合金的高频振动辅助冲裁研究 [D]. 重庆:重庆大学, 2011.
Wang S Q. Study on Deformation of Light Alloy Blanking Superposed High Frequency Vibration [D]. Chongqing:Chongqing University, 2011.
[14]Meng D A, Zhao X, Zhao S, et al. Effects of vibration direction on the mechanical behavior and microstructure of a metal sheet undergoing vibrationassisted uniaxial tension [J]. Materials Science and Engineering: A, 2019, 743: 472-481.
[15]Deng L, Li P, Wang X, et al. Influence of lowfrequency vibrations on the compression behavior and microstructure of T2 copper [J]. Materials Science and Engineering: A, 2018, 710: 129-135.
[16]刘成清, 李俊君,雷拓,等. 塑性阶段卸载后的残余应力理论计算及数值模拟: 城市地下空间综合开发技术交流会 [Z]. 上海:2011.
Liu C Q, Li J J, Lei T, et al. Theoretical calculation and numerical simulation on residual stress after unloading in the plastic phase [Z]. Shanghai:2011.
[17]Shintani T, Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of Xray diffraction [J]. Acta Materialia, 2011, 59(11): 4314-4322.
[18]顾邦平, 胡雄,徐冠华,等. 基于位错密度演化的高频振动时效微观机理 [J]. 稀有金属材料与工程, 2018,(8): 2477-2482.
Gu B P, Hu X, Xu G H, et al. Microscopic mechanism of high frequency vibration aging based on dislocation density evolution [J]. Rare Metal Materials and Engineering, 2018,(8): 2477-2482.
[19]Williamson G K, Smallman R E. Dislocation densities in some annealed and coldworked metals from measurements on the Xray debyescherrer spectrum [J]. Philosophical Magazine, 1956,1(1), 34-46.
[20]徐野, 韩晓辉, 叶结和, 等. 高速列车铝合金车体超声波冲击消除焊接残余应力方法研究 [J]. 电焊机, 2018, 48(3):65-71.
Xu Y, Han X H, Ye J H, et al. Research on welding residual stress elimination of aluminum alloy body of highspeed trains by means of ultrasonic impact treatment [J]. Electric Welding Machine, 2018, 48(3):65-71.
[21]许擎栋, 李克俭,蔡志鹏,等. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究 [J]. 金属学报,2019,55(4):489-495.
Xu Q D, Li K J, Cai Z P, et al. Effect of pulsed magnetic field on the microstructure of TC4 titanium alloy and its mechanism [J]. Acta Metallurgica Sinica, 2019,55(4):489-495.
[22]Siu K W, Ngan A H W, Jones I P. New insight on acoustoplasticityUltrasonic irradiation enhances subgrain formation during deformation [J]. International Journal of Plasticity,2011,27(5):788-800.
[23]Yao Z, Kim G, Wang Z, et al. Acoustic softening and residual hardening in aluminum: Modeling and experiments [J]. International Journal of Plasticity, 2012, 39: 75-87.
[24]芦亚萍, 何闻. 振动时效机理及其对疲劳寿命的影响分析 [J]. 农业机械学报,2006,(12):197-200.
Lu Y P, He W. Vibration stress relief mechanism and its impact on fatigue life [J]. Transactions of the Chinese Society for Agricultural Machinery, 2006,(12):197-200.
[25]潘龙,何闻,顾邦平. 电流脉冲对45碳钢试样位错密度和残余应力的影响 [J]. 材料热处理学报,2015,36(S1):134-138.
Pan L, He W, Gu B P. Effects of electric current pulse on dislocation density and residual stresses of 45 carbon steel workpieces [J]. Transactions of Materials and Heat Treatment, 2015, 36(S1):134-138.
|