网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
挤压与时效处理对建筑铝型材微观结构与力学性能的影响
英文标题:Effect of extrusion and aging treatment on microstructure and mechanical properties of building aluminum profiles
作者:杨洁 卢生 秦二丽 
单位:湖北轻工职业技术学院 中南大学 
关键词:等通道转角挤压 时效处理 AlMgSi合金 微观结构 力学性能 
分类号:TG146.2
出版年,卷(期):页码:2020,45(10):185-191
摘要:

 采用等通道转角挤压(ECAP)和时效热处理相结合的方法制备了高强塑性建筑铝型材,研究了等通道转角挤压+时效态AlMgSi合金的微观结构和力学性能的变化规律。结果表明:室温ECAP+时效处理和110~191 ℃ ECAP+时效处理的AlMgSi合金的平均晶粒尺寸介于102~176 nm,晶粒尺寸较为细小;AlMgSi合金在等通道转角挤压+时效处理过程中会析出大量的β″相和β′相;经过等通道转角挤压+时效处理后,AlMgSi合金的抗拉强度和屈服强度相较于固溶态和T6态均有所增大,而断后伸长率相较于固溶态降低;随着时效温度的升高,ECAP+时效态AlMgSi合金的强度和断后伸长率均呈现先增加、后减小的特征,110 ℃ ECAP+时效态试样具有最高的强度和较高的断后伸长率,170 ℃ ECAP+时效态试样具有最大的断后伸长率和较高的强度,这主要与等通道转角挤压+时效处理过程中的晶粒细化、位错强化和析出相的弥散强化作用有关。

 The high-strength plastic building aluminum profiles were prepared by the method of equal channel angular pressing (ECAP) and aging heat treatment, and the change laws of microstructure and mechanical properties for Al-Mg-Si alloy with ECAP + aging were studied. The results show that the average grain size of Al-Mg-Si alloy treated by ECAP at room temperature and aging and ECAP at 110-191 ℃ and aging is 102-176 nm, which is relatively small, and a lot of β″ and β′ phases of Al-Mg-Si alloy are precipitated in the process of ECAP and aging treatment. After ECAP and aging treatment, the tensile strength and the yield strength of Al-Mg-Si alloy increase compared with the solid solution and T6 states, while the elongation decreases compared with the solid solution state. With the increasing of aging temperature, the strength and elongation of ECAP+aged Al-Mg-Si alloy increase first and then decrease, the ECAP+aged sample at 110 ℃ has the highest strength and higher elongation, and the ECAP+aged sample at 170 ℃ has the highest elongation and higher strength, which are mainly related to grain refinement, dislocation strengthening and precipitation dispersion strengthening during ECAP and aging treatment.

基金项目:
国家自然科学基金资助项目(51571083);湖北省教育厅指导性项目(B2018477)
作者简介:
杨洁(1981-),女,硕士,副教授 E-mail:yangka512@163.com
参考文献:

 
[1]王振, 李亨,唐锴,等.控温变形对AlMgSiScZr合金时效及微观组织的影响
[J].材料热处理学报,2019,40(12):47-53.


Wang Z, Li H, Tang K, et al. Effect of temperature controlled deformation on aging and microstructure of AlMgSiScZr alloy
[J]. Transactions of Materials and Heat Treatment, 2019,40(12): 47-53.


[2]唐健江, 王嘉,刘嘉乐,等.变形时效对6061铝合金板材的组织和力学性能的影响
[J].锻压技术,2019,44(7):165-169.

Tang J J, Wang J, Liu J L, et al. Effect of deformation aging on microstructure and mechanical properties of 6061 aluminum alloy sheet
[J]. Forging & Stamping Technology, 2019,44 (7): 165-169.


[3]Panigrahi S K, Jayaganthan R. A study on the combined treatment of cryorolling, shortannealing, and aging for the development of ultrafinegrained Al 6063 alloy with enhanced strength and ductility
[J]. Metallurgical & Materials Transactions A, 2010, 41(10): 2675-2690.


[4]Yassar R S, Field D P, Weiland H. The effect of cold deformation on the kinetics of the β″ precipitates in an AlMgSi alloy
[J]. Metallurgical & Materials Transactions A, 2005, 36(8):2059-2065.


[5]彭靖, 韩永光,罗凤翔,等.预变形和时效处理对AlMgSiCu合金显微组织和性能的影响
[J].材料热处理学报,2019,40(10): 51-57.

Peng J, Han Y G, Luo F X, et al. Effect of pre deformation and aging treatment on Microstructure and properties of Al-Mg-Si-Cu alloy
[J]. Transactions of Materials and Heat Treatment, 2019,40(10): 51-57.


[6]余泳霖, 李烈军,彭政务,等.微量Mn对快速凝固-热挤压AlMgSi合金组织性能的影响
[J].特种铸造及有色合金,2019,39(10): 1143-1148.

Yu Y L, Li L J, Peng Z Z, et al. Effect of trace Mn on microstructure and properties of rapidly solidified hot extruded AlMgSi alloy
[J]. Special Casting and Nonferrous Alloy, 2019, 39(10): 1143-1148.


[7]周天国, 张方方.时效处理对连续ECAE动态成形AlMgSi合金导体组织和性能的影响
[J].沈阳大学学报,2016,28(4): 259-263.

Zhou T G, Zhang F F. Effect of aging treatment on microstructure and properties of Al-Mg-Si alloy conductor by continuous ECAE dynamic forming
[J]. Journal of Shenyang University, 2016, 28 (4): 259-263.


[8]许峰, 胡可,罗凤翔. 预变形与二次时效对AlMgSiCu合金组织与力学性能的影响
[J].金属热处理,2019,44(9):140-146.

Xu F, Hu K, Luo F X. Effects of pre deformation and secondary aging on Microstructure and mechanical properties of AlMgSiCu alloy
[J]. Metal Heat Treatment, 2019, 44(9): 140-146.


[9]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法
[S].

GB/T 228.1—2010,Metallic materials tensile testing—Part 1: Room temperature test method
[S].


[10]陈雪娇, 王华巍,赵卓,等. AlMgSi合金的高温流变过程动态再结晶研究
[J].轧钢,2019,36(4):7-12.

Chen X J, Wang H W, Zhao Z, et al. Dynamic recrystallization of AlMgSi alloy during high temperature rheological process
[J]. Steel Rolling, 2019, 36 (4): 7-12.


[11]周珊, 孙有平,何江美,等. 温度对大应变轧制AlMgSiCuZr合金的组织及性能的影响
[J].材料热处理学报,2019, 40(5): 65-70.

Zhou S, Sun Y P, He J M, et al. Effect of temperature on microstructure and properties of AlMgSiCuZr alloy rolled by high strain rolling
[J]. Transactions of Materials and Heat Treatment, 2019, 40(5): 65-70.


[12]Shankar M R, Chandrasekar S, King A H, et al. Microstructure and stability of nanocrystalline aluminum 6061 created by large strain machining
[J]. Acta Materialia, 2005, 53(18):4781-4793.


[13]滕敦波, 尹起,裴高登,等.AlMgSi合金的热变形行为及微观组织演变
[J].金属热处理,2018,43(11):66-69.

Teng D B, Yin Q, Pei G D, et al. Hot deformation behavior and microstructure evolution of AlMgSi alloy
[J]. Heat Treatment of Metals, 2018,43 (11): 66-69.


[14]张迎晖,黎翔,杨正斌,等. 预变形对AlMgSi系合金组织及力学性能的影响
[J].金属热处理,2018,43(6):165-169.

Zhang Y H, Li X, Yang Z B, et al. Effect of pre deformation on microstructure and mechanical properties of AlMgSi alloy
[J]. Heat Treatment of Metals, 2018,43(6): 165-169


[15]周天国, 吴晓玉,柯长奋,等. AlMgSi合金导体二次转角连续ECAE成形的可行性模拟
[J].沈阳大学学报,2017,29(5): 345-348.

Zhou T G, Wu X Y, Ke C F, et al. Feasibility simulation of secondary rotation continuous ECAE forming of AlMgSi alloy conductor
[J]. Journal of Shenyang University, 2017, 29(5): 345-348.


[16]周学浩, 孙有平,王文熙,等.轧制温度对大应变轧制AlMgSiCu合金组织与力学性能的影响
[J].金属热处理,2017, 42(9): 21-25.

Zhou X H, Sun Y P, Wang W X, et al. Effect of rolling temperature on microstructure and mechanical properties of large strain rolled AlMgSiCu alloy
[J]. Heat Treatment of Metals, 2017, 42 (9): 21-25.


[17]刘建勃, 王智毅,马雄. AlMgSi合金热变形行为与本构关系
[J]. 塑性工程学报,2017,24(3):197-202.

Liu J B, Wang Z Y, Ma X. Hot deformation behavior and constitutive relation of AlMgSi alloy
[J]. Journal of Plastic Engineering, 2017,24(3): 197-202.


[18]周天国,陈田田,苏鑫,等. 多道次ECAE动态成型AlMgSi合金导线组织与性能
[J]. 材料导报,2017,31(8):17-20.

Zhou T G, Chen T T, Su X, et al. Microstructure and properties of multi pass ECAE dynamic forming AlMgSi alloy wire
[J]. Materials Guide, 2017,31(8): 17-20.


[19]赵倩, 袁晓光,黄宏军,等. AlMgSiZrXEr合金β″相析出动力学研究
[J]. 稀有金属材料与工程,2016,45(11):2889-2894.

Zhao Q, Yuan X G, Huang H J, et al. Study on precipitation kinetics of β″ phase in AlMgSiZrXEr alloy
[J]. Rare Metal Materials and Engineering, 2016,45(11): 2889-2894.


[20]陈瑞, 许庆彦,柳百成. AlMgSi合金中针棒状析出相时效析出动力学及强化模拟研究
[J].金属学报,2016,52(8):987-999.

Chen R, Xu Q Y, Liu B C. Aging precipitation kinetics and strengthening simulation of needle like precipitates in AlMgSi alloy
[J]. Acta Metallurica Sinica, 2016,52(8): 987-999.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9