[1]田峰, 贾琛. 大型锻件的锻造工艺研究进展 [J]. 热加工工艺, 2015,44(5):18-20.
Tian F, Jia C. Research progress on forging process for large forgings [J]. Hot Working Technology, 2015,44(5):18-20.
[2]郭会光. 大型锻件制造核心技术的进展 [J]. 金属加工:热加工, 2012,(1):19-20.
Guo H G. The development of the core technology in the manufacture of large forgings [J]. Metal Working, 2012,(1):19-20.
[3]龚虎, 徐月. 大锻件不同砧型拔长工艺的研究进展 [J]. 大型铸锻件, 2012,(1):19-20.
Gong H, Xu Y. Research progress of drawing process with different shape of anvils in heavy forgings [J]. Heavy Casting and Forging, 2012,(1):19-20.
[4]吴贵军, 刘嵩, 何寒,等. 大锻件拔长工艺优化 [J]. 铸造技术, 2018, 39(6):1309-1311.
Wu G J, Liu S, He H, et al. Optimization design of heavy forgings stretching process [J]. Foundry Technology, 2018, 39(6):1309-1311.
[5]陆卫倩, 陈映川. 60Si2Mn长轴大锻件淬火爆裂分析与研究 [J]. 铸造技术, 2012,(5):49-51.
Lu W Q, Chen Y C. Analysis and research of burst on 60Si2Mn long shaftforgings [J]. Foundry Technology, 2012,(5):49-51.
[6]Raccuglia P, Elbert K C, Adler P D F, et al. Machinelearningassisted materials discovery using failed experiments [J]. Nature, 2016, 533(7601):73-76.
[7]Orme A D, Chelladurai I, Rampton T M, et al. Insights into twinning in Mg AZ31: A combined EBSD and machine learning study [J]. Computational Materials Science, 2016, 124:353-363.
[8]Alireza R, Sam C, Seetharaman S. Machine learning for predicting occurrence of interphase precipitation in HSLA steels [J]. Computational Materials Science, 2018, 154:169-177.
[9]Moore B A, Rougier E, O'Malley D, et al. Predictive modeling of dynamic fracture growth in brittle materials with machine learning [J]. Computational Materials Science, 2018, 148:46-53.
[10]Mohammed Alnaggar, Naina Bhanot. A machine learning approach for the identification of the Lattice discrete particle model parameters [J]. Engineering Fracture Mechanics, 2018, 197:160-175.
[11]程小辉, 黄冠良, 吴岳森, 等. 水平V型砧和平砧联合拔长圆形棒料的多工步数值模拟 [J]. 装备制造技术, 2016, 253(1):72-74,86.
Chen X H, Huang G L, Wu Y S, et al. Multistage numerical simulation of stretching round rod with horizontal Vshaped anvils and flat anvils [J]. Equipment Manufacturing Technology, 2016, 253(1):72-74,86.
[12]Wang R R, Zeng S M, Wang X M, et al. Machine learning for hierarchical prediction of elastic properties in FeCrAl system [J]. Computational Materials Science, 2019, 166:119-123.
[13]周志华. 机器学习 [M]. 北京: 清华大学出版社, 2016.
Zhou Z H. Machine Learning [M]. Beijing: Tsinghua University Press, 2016.
[14]王庆娟, 双翼翔, 孙亚玲,等. 锻造工艺对BTi20合金组织和力学性能的影响 [J]. 稀有金属, 2019,43(1):32-37.
Wang Q J, Shuang Y X, Sun Y L, et al. Effect of forging process on microstructure and mechanical properties of BTi20 alloy [J]. Chinese Journal of Rare Metal,2019, 43(1):32-37.
|