网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
激光切割工艺路径的双向蚁群算法优化
英文标题:Optimization on laser cutting process path based on bidirectional ant colony algorithm
作者:王娜 王海艳 姜云春 
单位:青岛黄海学院 智能制造学院 机电工程系 
关键词:激光切割路径 广义旅行商问题 双向蚁群算法 空行路程 切割时间 特征点选取 
分类号:TH164
出版年,卷(期):页码:2020,45(11):30-35
摘要:

 为了减少激光切割过程中的空行路程和切割时间,提出了基于广义旅行商模型和双向蚁群算法的激光切割工艺路径优化方法。建立了切割轮廓和特征点的概念,基于切割轮廓和特征点建立了优化切割路径的广义旅行商模型。提出了双向蚁群算法,在传统蚁群算法中加入了新的引导信息,针对激光切割路径的特殊性,对正向和反向搜索蚁群的引导信息进行了不同的设计;为了防止出现“打刀”问题,规定了备选城市集合的确定规则。在排样完毕的板材上进行验证,与传统蚁群算法规划的切割路径相比,双向蚁群算法规划的切割路径的空行路程减少了16.44%、切割时间减少了3.18%,证明了双向蚁群算法的有效性和优越性。

 To reduce empty stroke and cutting time in laser cutting process, the optimization method of laser cutting process path based on generalized travel salesman model and bidirectional ant colony algorithm was proposed. Then, the concepts of cutting profile and feature point were built, and the generalized travel salesman model of cutting path optimization was built based on cutting profile and feature point. Furthermore, the bidirectional ant colony algorithm was put forward by introducing new guiding information to traditional ant colony algorithm, and for the particularity of laser cutting path, the guiding information of searching ant colony in forward and reverse directions was designed respectively. In order to avoid knife-touching problem, the certainty rules of alternative city set was specified. Finally, the experiment was executed on the layout plate. And compared with the cutting path planned by traditional ant colony algorithm, the empty stroke of cutting path planned by the bidirectional ant colony algorithm decreases by 16.44%, and the cutting time decreases by 3.18%, which proves the validity and priority of bidirectional ant colony algorithm.

 
基金项目:
山东省重点研发计划项目(2019GGX105001);山东省博士后创新项目专项资金项目(201702038)
作者简介:
王娜(1983-),女,硕士,副教授 E-mail:st6md3@163.com
参考文献:

 [1]李世红,袁跃兰,刘绅绅,. 基于蚁群算法的激光切割工艺路径优化[J].锻压技术,2019,44(4):69-72.


Li S H, Yuan Y L, Liu S S, et al. Optimization on laser cutting process path based on ant colony algorithm [J]. Forging & Stamping Technology, 201944(4):69-72.


[2]侯普良, 刘建群, 高伟强. 基于改进蚁群算法的激光切割加工路径优化研究[J]. 机电工程, 201936(6):653-657.


Hou P L, Liu J Q, Gao W Q. Optimization of laser cutting path based on improved ant colony algorithm[J]. Journal of Mechanical & Electrical Engineering, 201936(6):653-657.


[3]刘山和,钱晓明,楼佩煌,等. 基于遗传蚁群混合算法的激光切割机路径优化[J]. 机械制造与自动化,2016, 45(6):92-95.


Liu S H, Qian X M, Lou P H, et al. Path pptimization of laser cutting based on combination of genetic algorithm and ant algorithm[J]. Machine Building & Automation, 2016, 45(6):92-95.


[4]张红勇, 张晓辉, 郑勐. 激光切割轨迹的自动化控制模型改进与实现[J]. 激光杂志, 201738(11):72-75.


Zhang H Y, Zhang X H, Zheng M. Improvement and realization of automatic control model of laser cutting trajectory [J]. Laser Journal, 201738(11):72-75.


[5]张青锋, 饶运清. 工艺约束下的激光切割路径优化算法设计[J]. 机械设计与制造, 2014(3):34-36.


Zhang Q F, Rao Y Q. A optimization algorithm of laser cutting path with process constrains [J]. Machinery Design & Manufacture, 2014(3):34-36.


[6]骆小俊. 基于五轴激光切割数控机床的NURBS曲线插补算法研究[D]. 武汉:华中科技大学,2019.


Luo X J. Research on NURBS Curve Interpolation Algorithm for Five-axis Laser Cutting CNC Machine Tool[D]. Wuhan: Huazhong University of Science & Technology, 2019.


[7]秦芙蓉, 罗朝晖, 董鹏. 基于GTSP问题的舰艇编队海上补给规划[J]. 兵工自动化, 2018, 37(10):31-34.


Qin F R, Luo C H, Dong P. Scheduling of underway replenishment for a battle group based on generalized traveling salesman problem[J]. Ordnance Industry Automation, 2018, 37(10):31-34.


[8]吴信涛,丁方强,刘国凯,等. DP800双相高强钢折弯及回弹研究[J]. 精密成形工程,2016,8(4):38-42.


Wu X T, Ding F Q, Liu G K, et al. Bending and springback of high-strength dual phase steel DP800 [J]. Journal of Netshape Forming Engineering, 2016,8(4):38-42.


[9]Chávez J J S, Escobar J W, Echeverri M G. A multi-objective pareto ant colony algorithm for the multi-depot vehicle routing problem with backhauls[J]. International Journal of Industrial Engineering Computations, 2016, 7(1):35-48.


[10]涂亮杰,李林升,林国湘. 基于改进蚁群算法的果园移动机器人路径规划研究[J]. 机床与液压,2019, 47 (23):69-73.


Tu L J, Li L S, Lin G X. Research on path planning of orchard mobile robot based on improved ant colony algorithm[J]. Machine Tool Hydraulics, 2019, 47 (23):69-73.


[11]侯宇超, 白艳萍, 胡红萍, . 基于精英蚁群算法的多目标生鲜配送路径优化研究[J]. 数学的实践与认识, 2018, 48(20):50-57.


Hou Y C, Bai Y P, Hu H P, et al. Study of multi-objective fresh food distribution route optimization based on elite ant colony algorithm[J]. Mathematics in Practice and Theory, 2018, 48(20):50-57.


[12]周浩理, 李太君, 肖沙, . 微正则退火的双向蚁群优化算法[J]. 传感器与微系统, 2016, 35(4):127-130.


Zhou H L, Li T J, Xiao S, et al. Optimization for bidirectional ant colony algorithm based on microcanonical annealing [J]. Transducer and Microsystem Technologies, 2016, 35(4):127-130.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9