[1]姜天亮,龚红英,施为钟,等.基于响应曲面法U形件弯曲成形工艺参数优化[J].上海工程技术大学学报,2019,33(3):278-282.
Jiang T L, Gong H Y, Shi W Z, et al. Process parameters optimization of U-shaped bending based on response surface methodology[J]. Journal of Shanghai University of Engineering Science, 2019,33(3):278-282.
[2]李鑫,周杰,丁蓉蓉,等. 基于响应面法的副车架内高压成形工艺参数优化[J].锻压技术,2018,43(10):111-116.
Li X,Zhou J,Ding R R,et al. Optimization on process parameters for hydroforming of sub-frame based on response surface method [J]. Forging & Stamping Technology,2018, 43(10):111-116.
[3]林浩波,刘军辉,吴立国.基于遗传算法的防撞钢梁热冲压成形工艺优化[J].塑性工程学报,2019,26(5):65-69.
Lin H B, Liu J H, Wu L G. Optimization of hot stamping process for anti-collision beam based on genetic algorithms [J]. Journal of Plasticity Engineering, 2019,26(5):65-69.
[4]谢晖,沈云飞,王杭燕.基于改进响应面模型的冲压回弹工艺稳健性优化[J].塑性工程学报,2018,25(4):26-32.
Xie H, Shen Y F, Wang H Y. Robustness optimization of stamping springback based on improved response surface model[J]. Journal of Plasticity Engineering, 2018,25(4):26-32.
[5]钟文,项辉宇,冷崇杰,等. 成形工艺参数对U形件回弹影响的仿真分析[J].机床与液压,2019,47(19):145-152.
Zhong W,Xiang H Y, Leng C J,et al.Simulation analysis of springback effect of forming process parameters on U-shaped workpiece[J]. Machine Tool & Hydraulics, 2019,47(19):145-152.
[6]刘强,俞国燕,梅端. 基于Dynaform与RBF-NSGA-II算法的冲压成形工艺参数多目标优化[J].塑性工程学报,2020,27(3):16-25.
Liu Q, Yu G Y, Mei D. Multi-objective optimization of stamping forming process parameterssed on Dynaform and RBF-NSGA-II algorithm [J]. Journal of Plasticity Engineering, 2020,27(3):16-25.
[7]李凯强,屈华鹏,冯翰秋,等.温变形0Cr14Mn21NiN奥氏体不锈钢的组织性能[J].金属热处理,2019,44(11):8-13.
Li K Q, Qu H P, Feng H Q, et al. Microstructure and properties of warm deformed OCr14Mn21NiN austenitic stainless steel [J]. Heat Treatment of Metals, 2019,44(11):8-13.
[8]李玉森,岳振明,妥之彧,等.铝合金管材6061自由弯曲成形工艺仿真及优化[J].工程科学学报,2020,42(6):769-777.
Li Y S, Yue Z M, Tuo Z Y, et al. Simulation and optimization of the free bending process of aluminum alloy 6061 pipe [J]. Chinese Journal of Engineering, 2020,42(6):769-777.
[9]季宁,张卫星,于洋洋,等.基于最优拉丁超立方抽样方法和NSGA-Ⅱ算法的注射成型多目标优化[J].工程塑料应用,2020,48(3):72-77.
Ji N, Zhang W X, Yu Y Y, et al. Multi-objective optimization of injection molding based on optimal latin hypercube sampling method and NSGA-II algorithm[J]. Engineering Plastics Application, 2020,48(3):72-77.
[10]蔺想红,郑鉴洋,王向文,等.基于深度学习网络的神经元自适应投影分类方法[J].电子学报,2020,48(7):1321-1329.
|