网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于响应面法的铝制发罩的冲压工艺参数优化
英文标题:Optimization on stamping process parameters for aluminum hood based on response surface method
作者:谈顺强 向荣 
单位:1. 长安福特汽车有限公司 2. 贵州民族大学 机械电子工程学院 
关键词:铝制发动机罩 成形性能 响应面模型 遗传算法 减薄率 回弹量 
分类号:TP319.56
出版年,卷(期):页码:2020,45(11):73-81
摘要:

 以车身覆盖件铝制发动机罩为研究对象,阐述了如何采用基于Autoform分析软件和成形性评价函数的成形工艺优化方法对零件的成形工艺参数进行优化。铝合金板的成形性能相对钢板而言,其局部冲压成形性能较差,容易产生裂纹,并且铝合金回弹较大且难以控制,板材的尺寸精度不易掌握。通过建立响应面模型,分析铝制发罩的冲压工艺参数,并使用遗传算法进行多目标优化参数求解,得出最优的工艺参数组合为: 拉延筋阻力系数X1=0.95,X2=0.38,X3=0.48,X4=0.48,压边力X5=556 kN。实际结果显示,采用最优的工艺参数组合,该铝制发罩的最大减薄率和最大回弹量得到了有效控制,缩短了零件的调试周期、降低了企业的开发成本。

  For aluminum hood of car body cover, it was expounded how to optimize the forming process parameters of parts by the forming process optimization method based on analysis software Autoform and formability evaluation function. Compared with the forming performance of steel plate, the local stamping performance of aluminum alloy plate is poor which is prone to crack. Meanwhile, the aluminum alloy sprinkback is larger and difficult to control, and the dimensional accuracy of plate is not easy to guarantee. The stamping process parameters of aluminum hood were analyzed by establishing response surface model. Then, the multi-objective optimization parameters were solved by genetic algorithm, and the optimal process parameter combination was obtained with the drawbead resistance coefficients of X1=0.95, X2=0.38, X3=0.48, X4=0.48, and the blank holder force of X5=556 kN. The actual results show that the maximum thinning rate and the maximum springback amount of aluminum hood are effectively controlled to shorten the debugging period of parts and reduce the development cost of enterprise.

基金项目:
作者简介:
谈顺强(1980-),男,硕士,工程师 E-mail:tanshunqiang@126.com
参考文献:

[1]郑瑞, 郄芳. 北美汽车材料的应用现状与发展趋势探讨[A]. “第十届中国钢铁年会第六届宝钢学术年会论文集[C]. 上海,2015.


Zheng R, Xie F. Discussion on the application status and development trend of automotive materials in North America [A].Proceedings of the 10th China Iron and Steel Annual Conference and the 6th Baosteel Academic Annual Conference [C]. Shanghai,2015.


[2]陈进. 汽车轻量化材料及制造工艺研究浅析[J].中国市场, 2016,(41): 40-42.


Chen J. Research on lightweight materials and manufacturing process for automobiles[J]. Chinese Market, 2016,(41): 40-42.


[3]牟宁博. 关于汽车新材料的应用现状及发展探讨[J]. 化工管理, 2016,408(11): 95.


Mou N B. Discussion on application status and development of new automotive materials [J]. Chemical Enterprise Management, 2016,408(11): 95.


[4]董家玲, 闫巍, 徐勇. 铝合金发动机罩外板冲压工艺技术研究[J]. 汽车工艺与材料, 2016, (11): 8-12.


Dong J L, Yan W, Xu Y. Research on stamping technology of aluminum alloy engine cover outer plate [J]. Automobile Technology Material, 2016, (11): 8-12.


[5]郭怡晖, 万鑫铭, 赵岩, . 基于变摩擦系数的铝合金覆盖件冲压成形模拟[J]. 塑性工程学报, 2015, 22(5): 39-44.


Guo Y H, Wan X M, Zhao Y, et al. Simulation of stamping forming of aluminum alloy covering parts based on variable friction coefficient [J]. Journal of Plasticity Engineering, 2015, 22(5): 39-44.


[6]Ramulu P J, Rao P S, Yimer W. Springback analysis on AA6061 aluminum alloy sheets[A]. ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming[C]. AIP Publishing LLC, 2016.


[7]Zhang R Y, Zhao G Y, Guo Z H, et al. Effects of material parameters on springback of 5052 aluminium alloy sections with hat profile in rotary draw bending[J]. International Journal of Advanced Manufacturing Technology, 2015, 80(5-8): 1067-1075.


[8]张永军. 铝合金汽车板性能与应用分析[J]. 世界有色金属, 2015, 444(12): 110-111.


Zhang Y J. Performance and application analysis of aluminum alloy automobile plate[J]. World Nonferrous Metals, 2015, 444(12): 110-111.


[9]甄雯. 铝合金在汽车工业中的应用现状及展望[J]. 山东工业技术, 2014, (21): 21.


Zhen W. Application status and prospect of aluminum alloy in automobile industry [J]. Shandong Industrial Technology, 2014, (21): 21.


[10]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2010Metallic materials—Tensile testing—Part 1:Method of test at room temperature[S].


[11]Naceur H, Guo Y Q, BatozmJ L, et al. Optimization of drawbead restraining forces and drawbead design in sheet metal forming process[J]. International Journal of Mechanical Sciences, 2001, 43(10): 2407-2434.


[12]赖宇阳. Isight参数优化理论与实例详解[M]. 北京:北京航空航天大学出版社,2012.


Lai Y Y. Isight Parameter Optimization Theory and Case Study in Detail[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2012.


[13]Sevastyanov V, Shaposhnikov O. Gradient based methods for multi-objective optimization[P]. United States:8041545,2011-10-18.


[14]Kleiber M, Knabel J, Rojek J. Response surface method for probabilistic assessment of metal forming failures[J].International Journal for Numerical Methods in Engineering, 2004, 60(1): 51-67.


[15]Gurmarsson L, Schedin E. Improving the properties of exterior body panels in automobiles using variable blank holder force[J]. Journal of Materials Processing Technology, 2001,114(2):168-173.


[16]Hu X L, Huang Z C, Wang Z F. Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms[A]. The 2003 Congress on Evolutionary Computation[C]. Canberra, 2003.


 


[17]Koch P N, Yang R J, Gu L . Design for six sigma through robust optimization[J]. Structural & Multidiplinary Optimization, 2004, 26(3-4):235-248.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9