网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
激光选区熔化成形Ti6Al4V钛合金叶片的超高周疲劳行为
英文标题:Ultra-high cycle fatigue behavior for Ti6Al4V titanium alloy blade formed by selective laser melting
作者:门正兴1 郑金辉 王昌飞 张宏 刘建超 马亚鑫 岳太文 
单位:1. 成都航空职业技术学院 机电工程学院  2. 成都雍熙聚材科技有限公司   3.四川大学 建筑与环境学院 破坏力学与工程防灾减灾四川省重点实验室 
关键词:激光选区熔化 Ti6Al4V钛合金 超高周疲劳 疲劳寿命 孔洞性缺陷 
分类号:TG316
出版年,卷(期):页码:2020,45(11):89-93
摘要:

 疲劳寿命低是限制激光选区熔化成形(SLM)零件在航空领域广泛应用的主要瓶颈。采用超声疲劳的试验方法对激光选区熔化成形Ti6Al4V钛合金叶片开展了超高周疲劳性能与断裂机理的试验研究,采用金相显微镜、扫描电镜分别对Ti6Al4V钛合金叶片进行微观组织及疲劳断口的形貌观察。试验结果表明:随着应力幅值的下降,SLM成形的Ti6Al4V钛合金叶片的疲劳寿命呈现线性上升的趋势,在109疲劳寿命下的疲劳强度为280 MPa。SLM成形的Ti6Al4V钛合金叶片的超高周疲劳裂纹的萌生位置存在竞争机制,即内部与次表面的竞争萌生。材料的孔洞性缺陷最终决定裂纹的萌生位置和扩展速度,孔洞性缺陷的尺寸直接决定了疲劳寿命。

 Poor fatigue life is the main bottleneck that restricts the wide application of selective laser melting (SLM) parts in the aviation field. Therefore, the ultra-high cycle fatigue properties and fracture mechanism of Ti6Al4V titanium alloy blade by SLM were studied by ultrasonic fatigue test method, and the microstructure and fatigue fracture morphology of Ti6Al4V titanium alloy blade were observed by metallographic microscope and scanning electron microscope respectively. The test results show that with the decreasing of stress amplitude, the fatigue life of Ti6Al4V titanium alloy blade formed by SLM shows a linear upward trend, and the fatigue strength is 280 MPa under the fatigue life of 109. Furthermore, there is a competitive mechanism in the initiation position of ultra-high cycle fatigue crack in Ti6Al4V titanium alloy blade formed by SLM, that is, the internal and subsurface competition initiation. In addition, the hole defect of material ultimately determines the crack initiation position and growth rate, and the size of hole defect directly determines the fatigue life.

基金项目:
四川省科技厅项目(2019YJ0519);中国博士后基金 (2019M653396);四川大学-自贡政府战略合作支持项目 (2019CDZG-4);四川大学-宜宾政府战略合作支持项目(2019CDYB-24);四川大学博士后基金(2019SCU12056)
作者简介:
门正兴(1980-),男,博士,高级工程师,教授 E-mail:amen1980@163.com
参考文献:

 [1]李淼泉, 李浩放, 熊爱明, . 带阻尼台TC6钛合金叶片精密锻造[J]. 锻压技术, 2018, 43(7): 96-102.


Li M Q, Li H F, Xiong A M, et al. Precision forging of TC6 titanium alloy blade with damping[J]. Forging & Stamping Technology, 2018, 43(7): 96-102.


[2]焦胜博, 程礼, 陈煊, . Ti-6Al-4V超高周疲劳性能研究及可靠性寿命分析[J]. 稀有金属材料与工程, 2017, 46(5): 1277-1282.


Jiao S B, Cheng L, Chen X, et al. Study on very-high-cycle fatigue behavior of Ti-6Al-4V and analysis of reliability life[J]. Rare Metal Materials and Engineering, 2017, 46(5): 1277-1282.


[3]柏龙, 熊飞, 陈晓红, . SLM制备的Ti6Al4V轻质点阵结构多目标结构优化设计研究[J]. 机械工程学报, 2018, 54(5): 156-165.


Bai L, Xiong F, Chen X H, et al. Multi-objective structural optimization design of Ti6Al4V lattice structure formed by SLM[J]. Chinese Journal of Mechanical Engineering, 2018, 54(5): 156-165.


[4]李婧, 白培康, 王建宏, . 选区激光熔化工艺参数对Ti6Al4V粉末成型性的影响[J]. 测试科学与仪器, 2018, 9(1): 88-91.


Li J, Bai P K, Wang J H, et al. Effects of selective laser melting process parameters on powder formability of Ti6Al4V[J]. Journal of Measurement Science and Instrumentation, 2018, 9(1): 88-91.


[5]Maurizio Iebba, Antonello Astarita, Daniela Mistretta, et al. Influence of powder characteristics on formation of porosity in additive manufacturing of Ti-6Al-4V components[J]. Journal of Materials Engineering and Performance, 2017, 26(8): 4138-4147.


[6]张安峰, 张金智, 张晓星, . 激光增材制造高性能钛合金的组织调控与各向异性研究进展[J]. 精密成形工程, 2019, 11(4): 1-8.


Zhang A F, Zhang J Z, Zhang X X, et al. Research progress in tissue regulation and anisotropy of high-performance titanium alloy by laser additive manufacturing[J]. Journal of Netshape Forming Engineering, 2019, 11(4): 1-8.


[7]Boniotti L, Beretta S, Patriarca L, et al. Experimental and numerical investigation on compressive fatigue strength of lattice structures of AlSi7Mg manufactured by SLM[J]. International Journal of Fatigue, 2019, 128:105-181.


[8]马涛, 刘婷婷, 廖文和, . 激光选区熔化成形Ti-6Al-4V疲劳性能研究[J]. 中国激光, 2018, 45(11): 118-126.


Ma T, Liu T T, Liao W H, et al. Fatigue properties of Ti-6Al-4V produced by selective laser melting[J]. Chinese Journal of Lasers, 2018, 45(11): 118-126.


[9]Periane S, Duchosal A, Vaudreuil S, et al. Machining influence on the fatigue resistance of Inconel 718 fabricated by selective laser melting (SLM)[J]. Procedia Structural Integrity, 2019, 19: 415-422.


[10]任永明, 林鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展[J]. 稀有金属材料与工程, 2017, 46(10): 3160-3168.


Ren Y M, Lin X, Huang W D. Progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 2017, 46(10): 3160-3168.


[11]徐仰立, 张冬云, 郭彦梧, . 选区激光熔化成形Ti6Al4V合金拉伸性能提高的研究[J]. 表面技术, 2019, 48(5): 108-115.


Xu Y L, Zhang D Y, Guo Y W, et al. Improvement of tensile properties of Ti6Al4V alloy by selective laser melting[J]. Surface Technology, 2019, 48(5): 108-115.


[12]陈迪, 王燎, 高海燕, . 3D打印钛合金内部孔洞的研究进展[J]. 应用激光, 2019, 39(1): 72-78.


Chen D, Wang L, Gao H Y, et al. Research progress on 3D printing internal cavity of titanium alloy[J]. Applied Laser, 2019, 39(1): 72-78.


[13]张海英, 董登科, 苏少普, . 后处理对激光选区熔化成形Ti-6Al-4V钛合金力学性能的影响[J]. 机械强度, 2019, 41(6): 1341-1344.


Zhang H Y, Dong D K, Su S P, et al. Effects of post processes on the mechanical properties of Ti-6Al-4V titanium alloy by selective laser melting[J]. Journal of Mechanical Strength, 2019, 41(6): 1341-1344.


[14]王磊, 马超, 陈洁. 热等静压对SLM工艺Ti-6Al-4V合金组织性能的影响[J]. 钢铁钒钛, 2019, 40(4): 39-44.


Wang L, Ma C, Chen J. Effect of hot isostatic pressing on the microstructure and mechanical properties of Ti-6Al-4V alloy fabricated by selective laser melting[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 39-44.


[15]胡富国, 柯林达, 肖美立, . 激光选区熔化成形Ti6Al4V合金的热处理组织演变机理[J]. 上海航天, 2019, 36(2): 96-103.


Hu F G, Ke L D, Xiao M L, et al. Heat treatment microstructural evolution of selective laser melting Ti6Al4V alloy[J]. Aerospace Shanghai, 2019, 36(2): 96-103.


[16]李敬, 刘敏, 马文有, . 工艺参数及热处理对选区激光熔化Ti6Al4V性能的影响研究[J]. 应用激光, 2017, 37(6): 779-786.


Li J, Liu M, Ma W Y, et al. Effects of process parameters and post-heat treatment on the properties of selective laser melted Ti6Al4V[J]. Applied Laser, 2017, 37(6): 779-786.


[17]李福泉, 孟祥旭, 董志宏, . 激光增材制造钢的后热处理研究现状[J]. 精密成形工程, 2018, 10(1): 97-108.


Li F Q, Meng X X, Dong Z H, et al. Research status of post-heat treatment of steel fabricated by laser additive manufacturing[J]. Journal of Netshape Forming Engineering, 2018, 10(1): 97-108.


[18]GB/T 26076—2010, 金属薄板(带)轴向力控制疲劳试验方法[S].


GB/T 26076—2010, Metal sheets and strips—Axial-force-controled fatigue testing method[S].

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9