网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
6082铝合金锻造组织不均匀性及其对锻件性能的影响
英文标题:Forging microstructure inhomogeneity of 6082 aluminum alloy and its effect on properties of forgings
作者:张劲 蒋震 虞大联 白玉琳 邓运来 
单位:中南大学 中车青岛四方机车车辆股份有限公司 
关键词:6082铝合金 锻造 组织不均匀性 力学性能 晶间腐蚀 
分类号:TG31
出版年,卷(期):页码:2020,45(9):8-15
摘要:

针对带筋板的连杆类锻件,结合有限元数值模拟,得到锻件的等效应变和有效应力,采用电子背散射衍射(EBSD)方法观察了不同应变区域的微观结构,并研究了锻造组织不均匀性对锻件力学性能和晶间腐蚀性能的影响。研究结果表明,在锻件不同区域,应力、应变存在很大的差距,锻件的微观组织、强度和晶间腐蚀性能存在不均匀性。在等效应变最小的区域,没有足够的变形能,主要是晶粒粗大的变形组织;在等效应变为2.1的区域,晶粒细化效果最为明显,在同样条件下的人工时效处理后的屈服强度和抗拉强度最高,分别为318和340 MPa,并且晶间腐蚀性能也是最佳的;在等效应变最大的区域,由于加大了变形储能,再结晶程度提高,晶粒长大导致强度有所下降。

For the connecting rod forgings with ribbed plates, the equivalent strain and effective stress of forgings were obtained by combining with finite element numerical simulation, and the effects of forging microstructure inhomogeneity on the mechanical properties and intergranular corrosion properties of forgings were studied by the electron backscattering diffraction (EBSD) method to observe the microstructures of different strain regions. The results show that the stress and strain vary greatly in different areas of forgings, and the microstructure, strength and intergranular corrosion properties of forgings are not uniform. In the region with the smallest equiralent strain, there is not enough deformation energy, and the deformation structure with coarse grain is the main. However, in the area with equivalent strain of 2.1, the grain refinement effect is the most obvious, the yield strength and the tensile strength after artificial aging treatment under the same conditions are the highest with 318 and 340 MPa respectively, and the intergranular corrosion property is also the best. In the region with the maximum equivalent strain, due to the increasing of deformation energy storage, the degree of recrystallization increases, and the growth of crystal grains results in decreased strength.

基金项目:
国家重点研发计划重点专项项目(2016YFB0300900)
作者简介:
张劲(1986-),男,博士,副教授 E-mail:zhangjinlari@csu.edu.cn
参考文献:


[1]Birol Y, Gokcil E, Guvenc M A, et al. Processing of high strength EN AW 6082 forgings without a solution heat treatment
[J]. Materials Science and Engineering: A, 2016, 674:25-32.



[2]Birol Y, Akdi S. Cooling slope casting to produce EN AW 6082 forging stock for manufacture of suspension components
[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(6): 1674-1682.



[3]Shen B, Deng L, Wang X Y. A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation
[J]. Materials Science and Engineering: A, 2015, 625:288-295.



[4]Sitdikov O, Sakai T, Goloborodko A, et al. Grain fragmentation in a coarse-grained 7475 Al alloy during hot deformation
[J]. Scripta Materialia, 2004, 51(2): 175-179.



[5]Liu M, Roven H J, Yu Y, et al. Deformation structures in 6082 aluminium alloy after severe plastic deformation by equal-channel angular pressing
[J]. Materials Science and Engineering: A, 2008, 483:59-63.



[6]Li D F, Zhang D Z, Liu S D, et al. Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation
[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1491-1497.



[7]Sakai T, Miura H, Goloborodko A, et al. Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475
[J]. Acta Materialia, 2009, 57(1): 153-162.



[8]Li H Z, Wang H J, Liang X P, et al. Hot deformation and processing map of 2519A aluminum alloy
[J]. Materials Science & Engineering A, 2011, 528(3): 1548-1552.



[9]Güzel A, Jger A, Parvizian F, et al. A new method for determining dynamic grain structure evolution during hot aluminum extrusion
[J]. Journal of Materials Processing Technology, 2012, 212(1): 323-330.



[10]Ma W Y, Wang B Y, Lin J G, et al. Influence of process parameters on properties of AA6082 in hot forming process
[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2454-2463.



[11]El-Danaf E A, Baig M. High temperature deformation characteristics of equal channel angular pressed AA6082-T6
[J]. Materials Science & Engineering A, 2013, 565: 301-307.



[12]Sun Y, Cao Z, Wan Z, et al. 3D processing map and hot deformation behavior of 6A02 aluminum alloy
[J]. Journal of Alloys and Compounds, 2018, 742:356-368.



[13]Zhao J, Deng Y, Tan J, et al. Effect of strain rate on the recrystallization mechanism during isothermal compression in 7050 aluminum alloy
[J]. Materials Science and Engineering: A, 2018, 734:120-128.



[14]Zhao J, Deng Y, Zhang J, et al. Effect of temperature and strain rate on the grain structure during the multidirectional forging of the Al-Zn-Mg-Cu alloy
[J]. Materials Science and Engineering: A, 2019, 756:119-128.



[15]Liu J, Tan M J, Jarfors A E W, et al. Formability in AA5083 and AA6061 alloys for light weight applications
[J]. Materials & Design, 2010, 31(S1): 66-70.



[16]Han N M, Zhang X M, Liu S D, et al. Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050
[J]. Journal of Alloys & Compounds, 2011, 509(10): 4138-4145.



[17]Liu Y W, Zhou X R, Thompson G E, et al. Precipitation in an AA6111 aluminium alloy and cosmetic corrosion
[J]. Acta Materialia, 2007, 55(1): 353-360.



[18]Wu P F, Deng Y L, Zhang J, et al. The effect of inhomogeneous microstructures on strength and fatigue properties of an Al-Cu-Li thick plate
[J]. Materials Science & Engineering: A, 2018, 731:1-11.



[19]Aung N N, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy
[J]. Corrosion Science, 2010, 52(2):589-594.



[20]Brunner J G, Birbilis N, Ralston K D, et al. Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024
[J]. Corrosion Science, 2012, 57: 209-214.



[21]Ralston K D, Fabijanic D, Birbilis N. Effect of grain size on corrosion of high purity aluminium
[J]. Electrochimica Acta, 2011, 56(4): 1729-1736.



[22]Donatus U, Thompson G E, Omotoyinbo J A, et al. Corrosion pathways in aluminium alloys
[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 55-62.



[23]Ly R, Hartwig K T, Castaneda H. Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061
[J]. Corrosion Science, 2018, 139: 47-57.



[24]Zhang T L, Ji Z S, Wu S Y. Effect of extrusion ratio on mechanical and corrosion properties of AZ31B alloys prepared by a solid recycling process
[J]. Materials & Design, 2011, 32(5): 2742-2748.



[25]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法
[S].


GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1:Method of test at room temperature
[S].

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9