网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
W含量对新型超高强度钢热塑性的影响
英文标题:Influence of W content on thermoplasticity for new ultra-high strength steel
作者:宁静 王敖 苏杰 王毛球 刘振宝 梁剑雄 程兴旺 
单位:钢铁研究总院 北京理工大学 
关键词:超高强度钢 热塑性 未溶碳化物 抗拉强度 断面收缩率 
分类号:TG142.41
出版年,卷(期):页码:2020,45(9):181-186
摘要:

为研究合金元素W对新型超高强度钢热塑性的影响,采用Gleeble-1500热模拟试验机研究了两种不同W含量的新型超高强度钢的高温拉伸行为,试验温度范围为800~1200 ℃,应变速率为0.1 s-1。结果表明:不同W含量的试验钢的抗拉强度接近,但低W含量的试验钢的断面收缩率明显优于高W含量的试验钢。800~ 900 ℃范围内,两种试验钢均因动态回复程度的升高而使得塑性变好,1000 ℃以上时,塑性的提升依赖于动态再结晶的进程,而高温时晶界熔断会造成断面收缩率的明显下降。结合微观组织分析得出,大颗粒含W未溶碳化物对热塑性的危害远高于细小弥散的Nb、Ti、V的析出碳化物。因此,对于高W含量的试验钢,应采用更长时间的固溶处理以实现良好的热塑性。

In order to research on the influence of alloying element W on the thermoplasticity for new ultra-high strength steel, the high temperature tensile behaviors for two kinds of new ultra-high strength steels with different W contents were studied by thermal simulation testing machine Gleeble-1500, and the test temperature range was 800-1200 ℃ and the strain rate was 0.1 s-1. The results show that the tensile strength of test steel with different W contents are similar, and the area reduction of test steel with low W content is obviously higher than that of high W content. In the range of 800-900 ℃, both two kinds of test steel have better plasticity due to the increase of dynamic recovery. Above 1000 ℃, the improvement of plasticity depends on the process of dynamic recrystallization, while the area reduction significantly drops when the grain boundary fusing happens at high temperature. Combined with microstructural analysis, it is concluded that the damage of W-containing undissolved carbides in large particles on the thermoplasticity is much higher than that of fine dispersed Nb, Ti, V precipitated carbides. Therefore, for the test steel with high W content, a solution treatment with langer times is employed to achieve better thermoplasticity.

基金项目:
作者简介:
宁静(1988-),女,硕士,工程师 E-mail:ningjing@nercast.com 通讯作者:苏杰(1965-),男,博士,正高级工程师 E-mail:sujie@nercast.com
参考文献:


[1]师昌绪. 材料大辞典
[M]. 北京:化学工业出版社,1994.


Shi C X. Comprehensive Dictionary of Materials
[M]. Beijing: Chemical Industry Press, 1994.



[2]Malakondaiah G, Srinitlas M, Rama R P. Ultrahigh-strength low-alloy steels with enhanced fracture toughness
[J]. Progress in Material Science, 1997, 42(1-4): 209-242.



[3]路妍. 新型超高强度钢的合金优化及组织性能研究
[D]. 昆明:昆明理工大学,2011.


Lu Y. Study on Alloy Optimization and Microstructure of New Ultra-High Strength Steel
[D]. Kunming: Kunming University of Science and Technology, 2011.



[4]Krauss G. Panel discussion on characterization of microstructures in low carbon HSLA steels and terminology problems
[J]. ISIJ International,1995, 35(8): 349.



[5]Jack K H. Structural transformations in the tempering of high carbon martensitic steel
[J]. Journal of Iron and Steel Institute, 1951, 169(1): 26-36.



[6]崔崑. 钢的成分、组织与性能
[M]. 北京:科学出版社, 2013.


Cui K. Composition, Structure and Properties of Steels
[M]. Beijing: Science Press, 2013.



[7]Dilmore M, Ruhlman J D. Eglin steel-A low alloy high strength composition
[P]. United States Patent: C21B, No.WO 2004/067783 A2, 2004-08-12.



[8]Lu Y, Su J, Wang J H, et al. Effect of W on microstructure of high strength and toughness steels
[J]. Acta Metallurgical Sinica:English Letters, 2011, 24(6): 423-431.



[9]龚志华, 杨钢,马龙腾,等. W,Mo含量对700℃叶片用GY200镍基合金析出相及性能的影响
[J]. 稀有金属,2018,42(3):246-251.


Gong Z H,Yang G,Ma L T,et al. Precipitation phases and mechanical properties of GY200 Ni-based alloy for blade with W and Mo addition
[J]. Chinese Journal of Rare Metals, 2018, 42(3): 246-251.



[10]周士猛, 程兴旺,张由景,等. 新型超高强度钢的高温形变热处理
[J]. 材料工程,2016,44(5):37-41.


Zhou S M, Cheng X W, Zhang Y J, et al. High temperature thermo-mechanical treatment of novel ultra-high-strength steel
[J]. Journal of Materials Engineering, 2016, 44(5): 37-41.



[11]Chen B H, Yu H. Hot ductility behavior of V-N and V-Nb microalloyed steels
[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(6): 525-529.



[12]张英杰, 王飞,董鹏,等. M54超高强度钢热塑性行为研究
[J]. 塑性工程学报,2016,23(3):119-124.


Zhang Y J, Wang F, Dong P, et al. Hot ductility behavior of M54 ultra-high strength steel
[J]. Journal of Plasticity Engineering, 2016, 23(3): 119-124.



[13]余永宁. 材料科学基础
[M]. 北京:高等教育出版社,2006.


Yu Y N. Foundation of Materials Science
[M]. Beijing: Higher Education Press, 2006.



[14]Mintz B, Abushosha R, Jonas J J. Influence of dynamic recrystallisation on the tensile ductility of steels in the temperature range 700 to 1150 ℃
[J]. ISIJ International, 1992, 32(2): 241-249.



[15]陶素芬, 王福明,严国卫,等. A105钢的高温热塑性
[J]. 材料热处理学报,2013,34(12):96-102.


Tao S F, Wang F M, Yan G W, et al. Hot ductility of A105 steel
[J]. Transactions of Materials and Heat Treatment, 2013, 34(12): 96-102.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9