网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
BP-ECAP中背压和温度对铜变形的影响
英文标题:Influence of backpressure and temperature on copper deformation in BP-ECAP
作者:吴春凌 周龙 陈斌 刘霞 
单位:湖北工业大学 中交第二航务工程局有限公司 长大桥梁建设施工技术交通行业重点实验室 交通运输行业交通基础设施智能制造技术研发中心 
关键词:背压等通道转角挤压 背压 致密性 超细晶结构 等效应变 
分类号:TG379
出版年,卷(期):页码:2020,45(9):187-193
摘要:

背压等通道转角挤压能够大大提高晶粒的细化度,同时防止裂纹的产生,使试样的微观组织和力学性能得到显著的提升。利用有限元软件Deform-3D,对已预压缩的铜切屑背压等径角挤压进行模拟,分析不同背压和温度条件下等效应变的变化,探索最佳温度和背压,使具有超细晶结构的铜切屑在块体成形的过程中,最大程度地提高致密性并保持其超细晶微结构。结果表明:当背压在0~50 MPa内、温度在20~300 ℃时,增大背压或温度,铜所受的等效应变增大,变形更为均匀,同时试样的致密度高;当背压超过50 MPa或温度高于300 ℃时,铜所受的等效应变会大幅度降低;当背压为50 MPa、温度为300 ℃时,铜所受等效应变最大、变形均匀、晶粒细化程度较好且致密度高。

Backpressure-equal-channel angular pressing (BP-ECAP) can greatly improve the grain refinement and prevent the generation of cracks at the same time, so that the microstructure and mechanical properties of sample are significantly improved. Then, the backpressure-equal-channel angular pressing process of pre-compressed copper chips was simulated by finite element software Deform-3D, and the changes of equivalent strain under different backpressures and temperatures were analyzed to explore the optimal temperature and backpressure, so that the copper chips with ultra-fine crystal structure improved the compactness and maintained its ultra-fine crystal microstructure to the maximum extent during the block forming process. The results show that when the backpressure is within 0-50 MPa or the temperature is between 20-300 ℃, increasing the backpressure or temperature increases the equivalent strain on the copper, the deformation is more uniform, and the compactness of sample is high. However, when the backpressure exceeds 50 MPa or the temperature is higher than 300 ℃, the equivalent strain on the copper is greatly reduced. Finally, when the backpressure is 50 MPa and the temperature is 300 ℃, the copper is subjected to the largest strain, the uniform deformation, the better grain refinement and the high compactness.

基金项目:
国家自然科学基金资助项目(51505135);湖北工业大学博士启动金项目(BSQD13023,BSQD2015017)
作者简介:
吴春凌(1976-),女,博士,副教授 E-mail:chunling_wu@126.com 通讯作者:周龙(1995-),男,硕士研究生 E-mail:1515250067@qq.com
参考文献:


[1]魏伟, 陈光. 大塑性变形制备纳米结构金属
[J]. 稀有金属,2003,27(3):361-364.


Wei W,Chen G. Processing nanostructured metals by severe plastic deformation
[J]. Chinese Journal of Rare Metals, 2003,27(3):361-364.



[2]李继忠, 丁桦,赵文娟,等. 数值模拟外转角半径及背压对纯钛ECAP变形的影响
[J]. 中国有色金属学报,2008,18(12):2178-2184.


Li J Z,Ding H,Zhao W J,et al. Simulations of influence of outer angular radius and back pressure on ECAP of pure titanium
[J]. The Chinese Journal of Nonferrous Metals,2008,18(12):2178-2184.



[3]李永志, 谢玉敏,白小波. 背压对等径角挤压成形工艺影响的有限元分析
[J]. 热加工工艺,2010,39(13):90-92,95.


Li Y Z,Xie Y M,Bai X B. Finite element analysis of effect of back pressure on plastic deformation in equal channel angular pressing
[J]. Hot Working Technology,2010,39(13):90-92,95.



[4]石凤健, 江理建,王亮,等.背压对等径角挤压坯料变形的影响
[J]. 江苏科技大学学报:自然科学版,2009,23(5):395-398.


Shi F J,Jiang L J,Wang L,et al. Effect of backpressure on billet deformation during equal channel angular pressing
[J]. Jour-nal of Jiangsu University of Science and Technology:Natural Science Edition,2009,23(5):395-398.



[5]刘霞. 纳米晶切屑ECAP工艺模拟及实验研究
[D].武汉:湖北工业大学,2019.


Liu X. ECAP Simulation and Experimental Study of Nanocrystalline Chip
[D]. Wuhan:Hubei University of Technology,2019.



[6]李永志, 白小波,谢玉敏,等. 带背压等径角挤压力的滑移线解析及背压作用分析
[J]. 热加工工艺,2010,39(17):125-128.


Li Y Z,Bai X B,Xie Y M,et al. Analysis of slip-line of extrusion force of ECAP with back pressure and its effect
[J]. Hot Working Technology,2010,39(17):125-128.



[7]丁雨田, 赵珺媛,郭廷彪,等. 纯铜带背压ECAP工艺塑性变形过程的有限元模拟
[J]. 热加工工艺,2016,45(19):140-142,146.


Ding Y T,Zhao J Y,Guo T B,et al. Finite element simulation of fine copper plastic deformation process of equal channel angular pressing with backpressure
[J]. Hot Working Technology,2016,45(19):140-142,146.



[8]Luo P, Xie H, Paladugu M,et al.Recycling of titanium machining chips by severe plastic deformation consolidation
[J].Journal of Materials Science,2010,45(17):4606-4612.



[9]Xia K, Wu X. Back pressure equal channel angular consolidation of pure Al particles
[J]. Scripta Materialia, 2005, 53(11):1225-1229.



[10]康锋. 背压对镁合金等径角变形的作用
[D].南京:南京理工大学,2009.


Kang F. Effect of Back Pressure on Equal Channel Angular Pressing of a Magnesium Alloy
[D].Nanjing:Nanjing University of Science and Technology,2009.



[11]刘晓燕, 柳奎君,罗雷,等.工业纯钛等径弯曲通道变形过程中的孪生行为研究进展
[J].稀有金属,2019,43(8):863-871.


Liu X Y, Liu K J, Luo L, et al. Progress in research on twinning behavior of commercially pure titanium during equal channel angular pressing
[J].Chinese Journal of Rare Metals,2019,43(8):863-871.



[12]Deng W J,Li Q,Li B L,et al. Thermal stability of ultrafine grained aluminium alloy prepared by large strain extrusion machining
[J]. Materials Science and Technology,2014,30(7):850-859.



[13]Mcdonald D T, Luo P, Palanisamy S, et al. Ti-6Al-4V recycled from machining chips by equal channel angular pressing
[J]. Key Engineering Materials, 2012, 520:295-300.



[14]Stolyarov V V, Lapovok R,Brodova  I G,et al. Ultrafine-grained Al-5wt.%Fe alloy processed by ECAP with backpressure
[J]. Materials Science and Engineering: A, 2003, 357(1-2):159-167.



[15]Iwahashi Y, Wang J, Horita Z, et al. Principle of equal-channel angular pressing for the processing of ultainra-fine gred materials
[J]. Scripta Materialia, 1996, 35(2):143-146.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9