网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
热态锯切条件下锯齿磨损实验与有限元仿真
英文标题:Experiment and finite element simulation on sawtooth wear under hot saw condition
作者:王琛 双远华 陈建勋 张雨田 李潮 王文豪 
单位:太原科技大学 
关键词:锯齿磨损 热锯机 Usui磨损模型 锯切线速度 单齿锯切深度 实验温度 
分类号:TF31
出版年,卷(期):页码:2020,45(9):194-200
摘要:

热态锯切过程中的锯齿磨损对锯切质量和加工效率有着重要的影响。首先,根据锯齿直线运动的假设,对锯切过程进行了分析;进而基于Usui模型建立了锯齿磨损仿真模型,并对磨损模型进行了实验验证。仿真研究了不同工艺参数(锯切线速度、单齿锯切深度与实验温度)对锯齿前刀面磨损的影响规律。最后,通过构建磨损敏感度表达式,探讨了不同工艺参数对磨损量的影响程度。结果表明:锯齿前刀面月牙洼深度随着锯切线速度、单齿锯切深度的增加而增加,随实验温度的增加而减小;月牙洼最深处距齿尖的距离随锯切线速度的增加而减小,随单齿锯切深度和实验温度的增加而增加;影响锯齿磨损的各个因素的主次顺序为:实验温度、锯切线速度、单齿锯切深度。

Sawtooth wear during hot sawing process has an important effect on sawing quality and machining efficiency. Firstly, the sawing process was analyzed according to the hypothesis linear motion hypothesis. Then, based on the Usui model, a sawtooth wear simulation model was established and verified by experiment, and the influences of different process parameters (sawing line speed, single tooth sawing depth and experiment temperature) on the wear of sawtooth rake face were simulated. Finally, by constructing the expression of wear sensitivity, the influences of different process parameters on the wear amount were discussed. The results show that the crescent crater wear depth on the sawtooth rake face increases with the increasing of the sawing line speed and the single tooth sawing depth and decreases with the increasing of the experiment temperature, and the distance from the deepest point of crescent crater to the tip of tooth decreases with the increasing of the sawng line speed and increases with the increasing of the single tooth sawing depth and the experiment temperature. Thus, the order of factors affecting the sawtooth wear is experiment temperature, sawing line speed and single tooth sawing depth.

基金项目:
山西省重点研发计划项目(201903D121049);山西省科技重大专项项目(20191102009)
作者简介:
王琛(1986-),男,博士研究生 E-mail:wangc1215@163.com 通讯作者:陈建勋(1966-),男,学士,正高级工程师 E-mail:cjx@tyust.edu.cn
参考文献:


[1]文庆明, 程志彦. 轧钢机械设备
[M]. 北京:人民邮电出版社, 2006.


Wen Q M, Cheng Z Y. Steel Rolling Machinery
[M]. Beijing: Post & Telecom Press,2006.



[2]刘战强, 艾兴. 高速切削刀具磨损寿命的研究
[J]. 工具技术, 2001,(12):3-7.


Liu Z Q, Ai X. Investigation of wear lifespan of cutting tools in high-speed machining
[J]. Tool Engineering, 2001,(12):3-7.



[3]范依航, 郑敏利, 杨树财,等. 高效切削钛合金时刀具磨损试验分析
[J]. 沈阳工业大学学报, 2011,33(2):49-54.


Fan Y H, Zheng M L, Yang S C, et al. Experimental analysis on tool wear during high-efficiency cutting of titanium alloy
[J]. Journal of Shenyang University of Technology, 2011,33(2):49-54.



[4]苌浩, 何宁, 满忠雷. TC4的铣削加工中铣削力和刀具磨损研究
[J]. 航空精密制造技术, 2003, 39(3):30-33.


Chang H, He N, Man Z L. Study on the cutting force and tool wear of milling TC4
[J]. Aviation Precision Manufacturing Technology, 2003, 39(3):30-33.



[5]王明海, 周冬亮, 刘娜, 等. 钛合金TA15铣削刀具磨损机理研究
[J]. 制造业自动化, 2017, 39(12):1-4,8.


Wang M H, Zhou D L, Liu N, et al. Research on wear mechanism of titanium alloy TA15 milling cutter
[J]. Manufacturing Automation, 2017, 39(12) 1-4,8.



[6]逯平平,李新梅,杨现臣.电力金具U型环磨损后的组织与性能
[J].热加工工艺, 2019,48(24):46-49,55.


Lu P P, Li X M, Yang X C. Structure and performance of electric power fittings U-shaped ring after wear
[J]. Hot Working Technology, 2019,48(24):46-49,55.



[7]王晓琴, 艾兴, 赵军, 等. Ti6Al4V车削刀具磨损及切削力研究
[J]. 组合机床与自动化加工技术, 2007,(7):14-16.


Wang X Q, Ai X, Zhao J, et al. Study on tool wear and cutting force in Ti6Al4V turning
[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2007,(7):14-16.



[8]贾庆莲, 乔彦峰. 涂层硬质合金刀具磨损机理的研究
[J]. 工具技术, 2005, 39(11):37-40.


Jia Q L, Qiao Y F. Study on wearing mechanism of coated cemented carbide tool
[J]. Tool Engineering, 2005, 39(11):37-40.



[9]皇涛,宋宇,张丹丹,等.基于修正的Archard磨损理论模型的H13模具钢热挤压磨损研究
[J].锻压技术,2019,44(9):160-166.


Huang T, Song Y, Zhang D D, et al. Study on hot extrusion wear of H13 die steel based on modified Archard wear theory model
[J]. Forging & Stamping Technology,2019,44(9):160-166.



[10]彭桂枝.基于有限元模拟的5754铝合金自冲铆接成形的模具磨损研究
[J].锻压技术,2019,44(11):135-139.


Peng G Z. Study on die wear in self-piercing riveting of 5754 aluminum alloy based on finite element simulation
[J]. Forging & Stamping Technology,2019,44(11):135-139.



[11]韩加友. 热锯机锯片的分析与改进
[D].沈阳:东北大学,2008.


Han J Y.The Analysis and Improvement of Hot Sawing Machine
[D].Shenyang: Northeastern University,2008.



[12]Piotr Nieslony, Wit Grzesik, Krzyszt Jarosz, et al. FEM-based optimization of machining operations of aerospace parts made of Inconel 718 superalloy
[J]. Procedia CIRP,2018,77:570-573.



[13]李晓滨,丁桦,唐正友.GCr15轴承钢连铸过程中热物性参数的研究
[J].材料与冶金学报,2010,9(4):241-244,254.


Li X B, Ding H, Tang Z Y. Study of thermo-physical properties for GCr15 bearing steel in continuous casting
[J]. Journal of Materials and Metallurgy,2010,9(4):241-244,254.



[14]孙立根,刘阳,朱立光,等.SS400和65Mn钢高温热力学性能分析
[J].炼钢,2015,31(3):63-68.


Sun L G, Liu Y, Zhu L G, et al. Analysis of high temperature thermodynamic properties of SS400 and 65Mn steel
[J]. Steelmaking,2015,31(3):63-68.



[15]李刚,许新颖,葛少成, 等.65Mn钢板激光扫描温度场及应变场的数值模拟
[J].金属热处理,2015,40(4):153-157.


Li G, Xu X Y, Ge S C, et al. Numerical simulation of temperature field and strain field of 65Mn steel plate by laser scanning
[J]. Heat Treatment of Metals,2015,40(4):153-157.



[16]刘阳. 建龙65Mn二冷配水优化及辊缝设计
[D].唐山:华北理工大学,2015.


Liu Y. Research on Secondary Cooling Optimization and Design of Roll Gap for Jan Long 65Mn
[D]. Tangshan:North China University of Science and Technology, 2015.



[17]岳彩旭. 硬态切削过程的有限元仿真与实验研究
[D]. 哈尔滨:哈尔滨理工大学,2010.


Yue C X. Finite Element Simulation and Experimental Research of Hard Cutting Process
[D]. Harbin:Harbin University of Science and Technology, 2010.



[18]Usui E,Shirakashi T. Analytical predicition of cutting tool wear
[J]. Wear, 1984,100: 129-151.



[19]姜增辉,宋亚洲,贾民飞.基于Usui模型的硬质合金刀具切削高强度钢磨损仿真研究
[J].制造技术与机床,2019,(5):112-115,121.


Jiang Z H, Song Y Z, Jia M F. Research on simulation of carbide tool wear in cutting high-strength steel based on the Usui model
[J]. Manufacturing Technology & Machine Tool,2019,(5):112-115,121.



[20]姜峰, 李宏伟. 金属切削有限元仿真软件AdvantEdge FEM用户手
[M]. 北京:机械工业出版社, 2018.


Jiang F, Li H W. Metal Cutting FEM Simulation Software AdvantEdge FEM User Manual
[M]. Beijing:China Machine Press,2018.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9