[1]Liu Y S, Shao X J, Liu J, et al. Finite element method and experimental investigation on the residual stress fields and fatigue performance of cold expansion hole[J]. Materials & Design, 2010,31(3):1208-1215.
[2]王燕礼, 朱有利,曹强,等. 孔挤压强化技术研究进展与展望[J]. 航空学报,2018,39(2):6-22.
Wang Y L, Zhu Y L, Cao Q, et al. Research progress and prospect on hole expansion technique[J]. Acta Aeronautica et Astronautica Sinica, 2018,39(2):6-22.
[3]孙暄, 王珉,许洪昌,等. 孔的开缝衬套冷挤压强化技术[J]. 机械制造,1998,(1):22-24.
Sun X, Wang M, Xu H C, et al. Split sleeve hole expansion technique[J]. Manufacture Process, 1998,(1):22-24.
[4]黄宏, 赵庆云, 刘风雷. 孔强化对7050铝合金残余应力分布的影响[J]. 航空制造技术,2016,(19):80-82.
Huang H, Zhao Q Y, Liu F L. Effect of strengthened hole on residual stress of 7050 aluminum alloy [J]. Aeronautical Manufacturing Technology, 2016,(19):80-82.
[5]Faghih S, Shaha S K, Behravesh S B, et al. Split sleeve cold expansion of AZ31B sheet: Microstructure, texture and residual stress[J]. Materials & Design, 2020, 186:1-13.
[6]贾忠宁, 韩苏征, 胡忠会. 孔冷挤压强化疲劳增寿技术研究[J]. 制造业自动化,2017,39(12):21-24.
Jia Z N, Han S Z, Hu Z H. Technology and research of fatigue life enhancing effect of cold expanding hole[J]. Manufacturing Automation, 2017,39(12):21-24.
[7]康晓军, 黎向锋,左敦稳,等. 开缝衬套制备技术综述[J].兵器材料科学与工程,2013,36(6):119-123.
Kang X J, Li X F, Zuo D W, et al. Review of preparation techniques of split sleeve[J]. Ordnance Material Science and Engineering, 2013,36(6):119-123.
[8]龚靖平. 小直径开缝衬套制备工艺及性能研究[D]. 南京:南京航空航天大学, 2015.
Gong J P. Research on the Manufacture and Property of Smalldiameter Split Sleeve[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
[9]Barter S, Dixon B. Investigation using quantitative fractography of an unexpected failure in an F/A18 centre fuselage bulkhead in the FINAL teardown program[J]. Engineering Failure Analysis, 2009,16(3):833-848.
[10]Kang J, Johnson W S, Clark D A. Threedimensional finite element analysis of the cold expansion of fastener holes in two aluminum alloys[J]. Journal of Engineering Materials and Technology, 2002, 124(2):140-145.
[11]Nigrelli V, Pasta S. Finiteelement simulation of residual stress induced by splitsleeve coldexpansion process of holes[J]. Journal of Materials Processing Technology, 2008,205(1-3):290-296.
[12]葛恩德, 苏宏华,程远庆,等. TC4板孔冷挤压强化残余应力分布与疲劳寿命[J]. 中国机械工程,2015,26(7):971-976.
Ge E D, Su H H, Cheng Y Q, et al. Residual stress fields and fatigue life of cold expansion hole in titanium alloy TC4[J]. China Mechanical Engineering, 2015,26(7):971-976.
[13]赵艳丽, 高玉魁,仲政. 30CrMnSiNi2A超高强度钢孔挤压强化残余应力场的模拟[J]. 力学季刊,2014,35(2):243-252.
Zhao Y L, Gao Y Q, Zhong Z. Finite element simulation of the residual stress fields of 30CrMnSiNi2A ultrahigh strength steel by hole cold expansion[J]. Journal of Marine Sciences, 2014,35(2):243-252.
[14]Ayatollahi M R, Arian Nik M. Edge distance effects on residual stress distribution around a cold expanded hole in Al2024 alloy[J]. Computational Materials Science, 2009,45(4):1134-1141.
[15]霍鲁斌, 曹增强,曹跃杰,等. 飞机结构紧固件孔冷挤压残余应力场分布数值模拟研究[J]. 航空制造技术, 2018,61(13):74-79.
Huo L B, Cao Z Q, Cao Y J, et al. Numerical study of residual stress field distribution in aircraft structure fastener hole after cold expansion[J]. Aeronautical Manufacturing Technology, 2018,61(13):74-79.
[16]李江, 李付国,荆丽娜,等. 5052铝合金板件双孔挤压强化的数值模拟研究[J]. 热加工工艺,2017,46(19):107-110.
Li J, Li F G, Jing L N, et al. Numerical simulation study of double holes extrusion strengthening of 5052 aluminum alloy plate[J]. Hot Working Technology, 2017,46(19):107-110.
[17]Anil Kumar S, Mahendra Babu N C. Effect of proximity hole on induced residual stresses during cold expansion of adjacent holes[J]. Materials Today: Proceedings, 2018,5(2, Part 1):5709-5715.
[18]张小辉, 许光群,聂利,等. 开缝衬套孔挤压残余应力场数值计算研究[J]. 材料科学与工艺,2019,27(4):64-70.
Zhang X H, Xu G Q, Nie L, et al. Numerical study on the residual stress field produced by split sleeve hole cold expansion[J]. Materials Science and Technology, 2019,27(4):64-70.
[19]黄金昌, 于雷. 开缝衬套钉孔挤压强化技术研究[J]. 飞机设计,2010,30(5):23-26.
Huang J C, Yu L. Technology and research of extrusion intensify with split sleeve[J]. Aircraft Design, 2010,30(5):23-26.
[20]刘长珍, 唐有乾,李立. 开缝衬套冷挤压孔工艺[J]. 航空制造技术,2000,(4):46-49.
Liu C Z, Tang Y Q, Li L. The process of cold worked hole with split sleeve[J]. Aeronautical Manufacturing Technology, 2000,(4):46-49.
[21]汪裕炳. 铝合金孔的冷挤压强化[J]. 航空工艺技术, 1994,(6):3-5.
Jiang Y B. Cold working of Al alloy fastener hole[J]. Aeronautical Manufacturing Technology, 1994,(6):3-5.
[22]欧阳小穗, 张晓晶,杨树勋. 孔挤压强化有限元分析及疲劳寿命估算[J]. 科学技术与工程,2011,11(12):2787-2791.
Ouyang X S, Zhang X J, Yang S X. Finite element analysis and fatigue life prediction of cold expansion[J]. Science Technology and Engineering, 2011,11(12):2787-2791.
[23]Yuan X, Yue Z F, Wen S F, et al. Numerical and experimental investigation of the cold expansion process with split sleeve in titanium alloy TC4[J]. International Journal of Fatigue, 2015,77:78-85.
[24]王彩勇. 小直径开缝衬套冷挤压强化孔疲劳寿命研究[D]. 南京:南京航空航天大学,2016.
Wang C Y. Research on Fatigue Life for Small Diameter Split Sleeve Cold Expansion Strengthening Hole[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
[25]Lacarac V. Prediction of the growth rate for fatigue cracks emanating from cold expanded holes[J]. International Journal of Fatigue, 2004,26(6):585-595.
[26]Liu J, Shao X J, Liu Y S, et al. Effect of cold expansion on fatigue performance of open holes[J]. Materials Science and Engineering: A, 2008,477(1-2):271-276.
[27]王幸, 徐武,张晓晶,等. TC4板冷挤压强化寿命预测与试验验证[J]. 浙江大学学报:工学版,2017,51(8):1610-1618.
Wang X, Xu W, Zhang X J, et al. Numerical prediction and experiment verification of fatigue life of TC4 plate strengthened by cold expansion[J]. Journal of Zhejiang University: Engineering Science, 2017,51(8):1610-1618.
[28]王燕礼, 许光群,符彬,等. 开缝衬套挤压工艺对TA15孔结构疲劳增益的影响[J].钛工业进展,2019,36(4):30-35.
Wang Y L, Xu G Q, Fu B, et al. Effect of split sleeve cold expansion process on the TAl5 hole fatigue gain[J]. Progress in Titanium Industry, 2019,36(4):30-35.
[29]Hou S, Zhu Y L, Cao Z H, et al. Effect of hole cold expansion on fatigue performance of corroded 7B04T6 aluminium alloy[J]. International Journal of Fatigue, 2019,126:210-220.
[30]Wang Y, Fu B, Nie L, et al. Fatigue nucleation site of cold expansion hole varying as fatigue load level varies[J]. SN Applied Sciences, 2019, 1(8):1-10.
[31]Shahriary P, Chakherlou T N. Investigating the effect of cold expansion on frictional force evolution during fretting fatigue tests of AL2024T3 plates[J]. International Journal of Mechanical Sciences, 2018,135:146-157.
[32]Liu H, Hu D, Wang R, et al. Experimental and numerical investigations on the influence of cold expansion on low cycle fatigue life of bolt holes in aeroengine superalloy disk at elevated temperature[J]. International Journal of Fatigue, 2020,132:1-11.
[33]罗学昆,王欣,胡仁高,等.孔挤压强化对Inconel 718高温合金疲劳性能的影响[J].中国表面工程,2016,29(3):116-122.
Luo X K,Wang X,Hu R G,et al.Eeffects of hole cold expansion on fatigue property of Inconel 718 superallay[J]. China Surface Engineering,2016,29(3):116-122.
[34]Emami Geiglou Z, Chakherlou T N. Numerical and experimental investigation of the effect of the cold expansion process on the fatigue behavior of hybrid (bondedbolted) double shear lap aluminum joints[J]. International Journal of Fatigue, 2019,126:30-43.
[35]范娟, 李付国,李江,等. 7050高强铝合金孔板的挤压强化与拉伸试验研究[J]. 稀有金属材料与工程,2012,41(6):978-982.
Fan J, Li F G, Li J, et al. Study of local cold working and tensile test for 7050 high strength aluminum alloy hole plate[J]. Rare Metal Materials and Engineering, 2012,41(6):978-982.
[36]颜士肖, 苏宏华,徐九华. 基于弹塑性理论的钛合金孔冷挤压回弹分析[J]. 航空制造技术,2012,(5):70-73.
Yan S X, Su H H, Xu J H. Springback analysis of cold expanded hole in Titanium alloy based on elastro plastic theory[J]. Aeronautical Manufacturing Technology, 2012,(5):70-73.
[37]杜旭, 张腾,何宇廷,等. 孔冷挤压有限元仿真中的铰削分界面位置确定方法[J]. 航空学报,2019,40(4):268-280.
Du X, Zhang T, He Y Y, et al. Determining position of reaming interface in cold expansion FEM simulation[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(4): 268-280.
[38]冯琳娜, 殷之平,王浩然,等. 钛-铝混合叠层结构应用开缝衬套冷挤压技术的工艺性研究[J]. 科技与创新, 2018,118(22):24-26.
Feng L N, Yin Z P, Wang H R, et al. Study on the technology of split sleeve cold expansion of TiAl composite laminated structure[J]. Technology and Innovation, 2018,118(22):24-26.
|