[1]程超, 陈志勇,秦绪山,等. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报,2020,56(2):193-202.
Chen C, Chen Z Y, Qin X S, et al. Microstructure, texture and mechanical property of TA32 titanium alloy thick plate[J]. Acta Metallurgica Sinica, 2020, 56(2): 193-202.
[2]蔡建明, 曹春晓. 新一代600 ℃高温钛合金材料的合金设计及应用展望[J]. 航空材料学报,2014,34(4):27-36.
Cai J M, Cao C X. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy[J]. Journal of Aeronautical Materials, 2014, 34(4): 27-36.
[3]陈灿, 陈明和,谢兰生,等. TA32新型钛合金高温流变行为及本构模型研究[J]. 稀有金属材料与工程,2019,48(3):827-834.
Chen C, Chen M H, Xie L S, et al. Flow behavior of TA32 titanium alloy at high temperature and its constitutive model[J]. Rare Metal Materials and Engineering,2019, 48(3): 827-834.
[4]Takahashi M, Murakoshi Y, Terasaki M, et al. Study on electromagnetic forming(Ⅴ)Free bulging of highstrengthmetal plates[J]. J. Mech. Eng., 1988, 42(1): 1-8.
[5]Revuelta A, Larkiola J, Korhonen A S, et al. High velocity forming of magnesium and titanium sheets[A]. Esaform Conference on Material Forming [C]. United States:American Institute of Physics,2007.
[6]Srinivasan S. A Simulation Perspective on Dimensional Control and Formability in Impact Forming[D]. Ohio State: The Ohio State University, 2010.
[7]孙圣朋. 钛合金板材及管件电磁成形技术的研究[D]. 沈阳:沈阳航空航天大学,2016.
Sun S P. Research on the Electromagnetic Forming Technology of Titanium Alloy Sheet and Pipe Fitting[D]. Shenyang: Shenyang Aerospace University, 2016.
[8]周海洋, 莫健华,李建军,等. 钛合金TC4室温下电磁胀形的工艺分析[J]. 塑性工程学报,2013,20(3):76-81.
Zhou H Y, Mo J H, Li J J, et al. Experimental and numerical analysis of electromagnetic bulging process of titanium alloy TC4 under room temperature[J]. Journal of Plasticity Engineering, 2013,20(3): 76-81.
[9]王清江, 刘建荣,杨锐. 高温钛合金的现状与前景[J]. 航空材料学报,2014, 34(4):1-26.
Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective[J]. Journal of Aeronautical Materials, 2014, 34(4): 1-26.
[10]梅龙, 刘维,邹希凡,等. 采用均匀压力线圈的铝合金曲面零件电磁校形[J]. 锻压技术,2020, 45(9):118-122.
Mei L, Liu W, Zhou X F, et al. Electromagnetic sizing for aluminium alloy curved surface part by uniform pressure coils[J]. Forging & Stamping Techology, 2020,45 (9): 118-122.
[11]龚宗辉. TA32钛合金高温变形及动态力学行为的研究[D].南京:南京航空航天大学,2018.
Gong Z H. Investigation on the Hot Deformation and the Dynamic Mechanical Behavior of TA32 Titanium Alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[12]Li Q, Xu Y B, Bassim M N. Dynamic mechanical behavior of pure titanium[J]. Journal of Materials Processing Technology, 2004, s155-156(1):1889-1892.
[13]黄文. 纯钛高温动态拉伸力学性能研究[D]. 合肥:中国科学技术大学,2006.
Huang W. Study on the Dynamic Behavior of Polycrystalline Titanium at Elevated Temperature[D]. Hefei: University of Science and Technology of China, 2006.
[14]李光耀, 陈侣侣,耿辉辉,等. 5182Al/HC340LA异种金属件磁脉冲焊接数值模拟与试验验证[J]. 塑性工程学报,2018,25(3):155-162.
Li G Y, Chen L L, Geng H H, et al. Numerical simulation and experimental verification of magnetic pulse welding for dissimilar metal parts 5182Al/HC340LA[J]. Journal of Plasticity Engineering, 2018, 25(3): 155-162.
[15]Lee K J, Kumai S, Arai T, et al. Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding[J]. Materials Science and Engineering A, 2007, 471(1-2): 95-101.
[16]Moghaddas M A, Abdollahzadeh A, Hajian M. The effects of backplate support and welded metal type on the characteristics of joints produced by magnetic pulse welding[J]. The International Journal of Advanced Manufacturing Technology, 2019,102:379-392.
|