网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TA32钛合金板成形性能与电磁辅助弯曲成形实验研究
英文标题:Experimental study on formability and electromagneticassisted bending for TA32 titanium alloy sheets
作者:林遵东 吕枫 韩玉杰 王耀奇 董淑辉 于海平 
单位:哈尔滨工业大学 中国航空制造技术研究院 
关键词:电磁成形 高温钛合金 成形性能 弯曲 匀压线圈 
分类号:TG391
出版年,卷(期):页码:2021,46(1):104-109
摘要:

 由于TA32钛合金板室温成形性差、精度难以保证,开展了电磁辅助弯曲成形方法的实验研究,通过拉伸和电磁成形实验探究了TA32钛合金的力学性能和成形性能,获得了TA32钛合金板在准静态和动态拉伸下的应力、应变关系,给出了在电磁成形状态下的成形极限应变,阐明了电磁成形作用下的TA32钛合金的增塑机制。采用匀压式电磁辅助弯曲成形的方法对TA32钛合金板开展实验研究,结果表明:电磁辅助弯曲成形方法能够有效地提高弯曲件的成形精度,并且在一定条件下,放电能量越高,贴模效果越好、成形精度越高。带压紧翼的弯曲件的变形区外层过度伸长而产生减薄并开裂,不带压紧翼的弯曲件通过合理地控制放电电压能够获得较好的成形效果。

 

 Due to the poor formability of TA32 titanium alloy sheets at room temperature and the difficulty to ensure accuracy, the experimental study on electromagnetic-assisted bending method was carried out, and the mechanical properties and forming properties of TA32 titanium alloy were explored by tensile and electromagnetic forming experiments to obtain the stress-strain relationship of TA32 titanium alloy sheet under quasi-static tensile and dynamic tensile. Then, the forming limit strain in the state of electromagnetic forming was provided, and the plasticizing mechanism of TA32 titanium alloy under electromagnetic forming was clarified. Furthermore, TA32 titanium alloy sheet was studied by the uniform pressure electromagnetic-assisted bending method. The results show that the electromagnetic-assisted bending method effectively improves the forming precision of bending parts, and the higher the discharge energy under certain conditions is, the better the sticking effect to mold and the higher the forming accuracy are. In addition, the outer layer of deformation zone for the bending part with the compression wing is excessively elongated to produce thinning and cracking, and the bending part without the compression wing obtains better forming effects by reasonably controlling the discharge voltage.

基金项目:
基金项目:装备预研领域基金(61409230408);国家自然科学基金资助项目(51675128)
作者简介:
作者简介:林遵东(1996-),男,硕士研究生 E-mail:1761367429@qq.com 通讯作者:于海平(1974-),男,博士,副教授 E-mail:haipingy@hit.edu.cn
参考文献:

 [1]程超, 陈志勇,秦绪山,等. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报,2020,56(2):193-202.


Chen C, Chen Z Y, Qin X S, et al. Microstructure, texture and mechanical property of TA32 titanium alloy thick plate[J]. Acta Metallurgica Sinica, 2020, 56(2): 193-202.

[2]蔡建明, 曹春晓. 新一代600 ℃高温钛合金材料的合金设计及应用展望[J]. 航空材料学报,2014,34(4):27-36.

Cai J M, Cao C X. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy[J]. Journal of Aeronautical Materials, 2014, 34(4): 27-36.

[3]陈灿, 陈明和,谢兰生,等. TA32新型钛合金高温流变行为及本构模型研究[J]. 稀有金属材料与工程,2019,48(3):827-834.

Chen C, Chen M H, Xie L S, et al. Flow behavior of TA32 titanium alloy at high temperature and its constitutive model[J]. Rare Metal Materials and Engineering,2019, 48(3): 827-834.

[4]Takahashi M, Murakoshi Y, Terasaki M, et al. Study on electromagnetic forming(Ⅴ)Free bulging of highstrengthmetal plates[J]. J. Mech. Eng., 1988, 42(1): 1-8.

[5]Revuelta A, Larkiola J, Korhonen A S, et al. High velocity forming of magnesium and titanium sheets[A]. Esaform Conference on Material Forming [C]. United States:American Institute of Physics,2007.

[6]Srinivasan S. A Simulation Perspective on Dimensional Control and Formability in Impact Forming[D]. Ohio State: The Ohio State University, 2010. 

[7]孙圣朋. 钛合金板材及管件电磁成形技术的研究[D]. 沈阳:沈阳航空航天大学,2016.

Sun S P. Research on the Electromagnetic Forming Technology of Titanium Alloy Sheet and Pipe Fitting[D]. Shenyang: Shenyang Aerospace University, 2016.

[8]周海洋, 莫健华,李建军,等. 钛合金TC4室温下电磁胀形的工艺分析[J]. 塑性工程学报,2013,20(3):76-81.

Zhou H Y, Mo J H, Li J J, et al. Experimental and numerical analysis of electromagnetic bulging process of titanium alloy TC4 under room temperature[J]. Journal of Plasticity Engineering, 2013,20(3): 76-81.

[9]王清江, 刘建荣,杨锐. 高温钛合金的现状与前景[J]. 航空材料学报,2014, 34(4):1-26.

Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective[J]. Journal of Aeronautical Materials, 2014, 34(4): 1-26.

[10]梅龙, 刘维,邹希凡,等. 采用均匀压力线圈的铝合金曲面零件电磁校形[J]. 锻压技术,2020, 45(9):118-122.

Mei L, Liu W, Zhou X F, et al. Electromagnetic sizing for aluminium alloy curved surface part by uniform pressure coils[J]. Forging & Stamping Techology, 2020,45 (9): 118-122.

[11]龚宗辉. TA32钛合金高温变形及动态力学行为的研究[D].南京:南京航空航天大学,2018.

Gong Z H. Investigation on the Hot Deformation and the Dynamic Mechanical Behavior of TA32 Titanium Alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.

[12]Li Q, Xu Y B, Bassim M N. Dynamic mechanical behavior of pure titanium[J]. Journal of Materials Processing Technology, 2004, s155-156(1):1889-1892.

[13]黄文. 纯钛高温动态拉伸力学性能研究[D]. 合肥:中国科学技术大学,2006.

Huang W. Study on the Dynamic Behavior of Polycrystalline Titanium at Elevated Temperature[D]. Hefei: University of Science and Technology of China, 2006.

[14]李光耀, 陈侣侣,耿辉辉,等. 5182Al/HC340LA异种金属件磁脉冲焊接数值模拟与试验验证[J]. 塑性工程学报,2018,25(3):155-162.

Li G Y, Chen L L, Geng H H, et al. Numerical simulation and experimental verification of magnetic pulse welding for dissimilar metal parts 5182Al/HC340LA[J]. Journal of Plasticity Engineering, 2018, 25(3): 155-162.

[15]Lee K J, Kumai S, Arai T, et al. Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding[J]. Materials Science and Engineering A, 2007, 471(1-2): 95-101.

[16]Moghaddas M A, Abdollahzadeh A, Hajian M. The effects of backplate support and welded metal type on the characteristics of joints produced by magnetic pulse welding[J]. The International Journal of Advanced Manufacturing Technology, 2019,102:379-392.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-62920652 +86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备09032115号-5