网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
S390粉末高速钢高温变形流动应力行为与预测
英文标题:Flow stress behavior and prediction of S390 powder metallurgy high speed steel at high temperature deformation
作者:王欣 葛学元 王淼辉 刘恒三 胡启鹏 王金南 
单位:北京机科国创轻量化科学研究院有限公司 机械科学研究总院集团有限公司 
关键词:S390粉末高速钢 流动应力 本构方程 热变形行为 Zener-Hollomon参数 
分类号:TG376.3
出版年,卷(期):页码:2021,46(1):154-163
摘要:

 在变形温度为950~1200 ℃、应变速率为0.002~1 s-1和变形程度为50%的条件下,采用Gleeble-1500D热模拟机进行S390粉末高速钢等温压缩实验,研究其热变形行为。S390粉末高速钢的流动应力随着变形温度的降低和应变速率的升高而显著增大,可通过Zener-Hollomon参数综合反映。通过实验测定的数据,建立了基于双曲正弦Arrhenius方程的综合性本构模型。考虑变形程度对S390粉末高速钢变形行为的影响,材料常数如α、n、lnA、Q等均为应变的函数。所建立本构方程的流动应力预测值与实验值吻合较好,平均相对误差为5.055%,表明该本构方程用于分析S390粉末高速钢的热变形行为是可靠的。

 Isothermal compression tests of S390 powder metallurgy high speed steel (S390 PMHSS) were carried out to investigate its hot deformation behavior on a Gleeble-1500D thermal simulator under the temperatures varying from 950 to 1200 ℃, the strain rates ranging from 0.002 to 1 s-1, and the deformation degree of 50%. The flow stress of S390 PMHSS increased significantly with the decreasing of deformation temperature and the increasing of strain rate, which could be represented by Zener-Hollomon parameter. Comprehensive constitutive model based on the hyperbolic sine Arrhenius equation was developed by the experimentally measured data. Considering the effects of deformation degree on the deformation behavior of S390 PMHSS, the material constants such as α, n, lnA and Q were the functions of the strain. The predicted flow stress values by the developed constitutive equation show a close agreement with the experimental values, and the average absolute relative error is 5.055%, which indicates that the constitutive equation can reliably analyze the hot deformation behavior of S390 PMHSS.

基金项目:
基金项目:国家自然科学基金资助项目(51975240);先进成形技术与装备国家重点实验室开放基金(SKL2019006)
作者简介:
作者简介:王欣(1981-),男,博士,高级工程师 E-mail:wangxin-11@163.com
参考文献:

 [1]Liu Z Y, Loh N H, Khor K A, et al. Microstructure evolution during sintering of injection molded M2 high speed steel[J]. Materials Science and Engineering A, 2000, 293(1): 46-55.


[2]蔡红,叶俭,王志明,等. S390粉末高速钢真空气淬的显微组织及性能[J]. 金属热处理, 2010, 35(2): 67-69.

Cai H, Ye J, Wang Z M, et al. Microstructure and properties of powder metallurgy high speed steel S390 by vacuum gas quenching[J]. Heat Treatment of Metals, 2010, 35(2): 67-69.

[3]李响妹,叶俭,朱祖昌. 热处理工艺对S390粉末高速钢组织和性能的影响[J]. 机械工程材料, 2013, 37(12):42-45.

Li X M, Ye J, Zhu Z C. Effect of heat treatment on microstructure and properties of S390 powder metallurgy high speed steel[J]. Materials for Mechanical Engineering, 2013, 37(12):42-45.

[4]Godec M,  B, Mandrino D, et al. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel[J]. Materials Characterization, 2010, 61(4): 452-458.

[5]Wieβner M, Leisch M, Emminger H, et al. Phase transformation study of a high speed steel powder by high temperature X-ray diffraction[J]. Materials Characterization, 2008, 59(7): 937-943.

[6]Mesquita R A, Barbosa C A. High-speed steels produced by conventional casting, spray forming and powder metallurgy[J]. Materials Science Forum, 2005, (498-499): 244-250.

[7]Peng H, Ling H, Li L, et al. Evolution of the microstructure and mechanical properties of powder metallurgical high-speed steel S390 after heat treatment[J]. Journal of Alloys and Compounds, 2018, 740(5): 766-773.

[8]He X, Yu Z, Lai X. Analysis of high temperature deformation behavior of a high Nb containing TiAl based alloy[J]. Materials Letters, 2008, 62(26): 4181-4183.

[9]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.

[10]Wu H, Wen S P, Huang H, et al. Hot deformation behavior and constitutive equation of a new type Al-Zn-Mg-Er-Zr alloy during isothermal compression[J]. Materials Science and Engineering A, 2016, 651: 415-424. 

[11]Li H, Li Y, Wei D, et al. Constitutive equation to predict elevated temperature flow stress of V150 grade oil casing steel[J]. Materials Science and Engineering A, 2011, 530: 367-372.

[12]Lin Y C, Ding Y, Chen M, et al. A new phenomenological constitutive model for hot tensile deformation behaviors of a typical Al-Cu-Mg alloy[J]. Materials & Design, 2013, 52: 118-127.

[13]Mcqueen H J, Ryan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering A, 2002, 322(1): 43-63.

[14]Samantaray D, Mandal S, Bhaduri A K. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel[J]. Materials & Design, 2010, 31(2): 981-984.

[15]Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Science and Engineering A, 2009, 500(1): 114-121.

[16]Lin Y C, Chen M, Zhong J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J]. Computational Materials Science, 2008, 42(3): 470-477.

[17]郭彪, 葛昌纯, 徐轶,等. 喷射成形FGH95高温变形流变应力行为与预测[J]. 中国有色金属学报, 2012, 22(11):3029-3037.

Guo B, Ge C C, Xu Y, et al. Flow stress behavior and prediction of spray-forming FGH95 superalloy at elevated temperature[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(11): 3029-3037.

[18]Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions[J]. Metall.Rev., 1969, 14(1): 1-24.

[19]Sellars C M. The kinetics of softening processes during hot working of austenite[J]. Czechoslovak Journal of Physics B, 1985, 35(3): 239-248.

[20]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

[21]Samantaray D, Mandal S, Bhaduri A K. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel[J]. Computational Materials Science, 2010, 47(2): 568-576.

[22]Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy[J]. Materials Science & Engineering A, 2012, 542(18): 79-87.

[23]Rezaei Ashtiani H R, Parsa M H, Bisadi H. Constitutive equations for elevated temperature flow behavior of commercial purity aluminum[J]. Materials Science and Engineering A, 2012, 545: 61-67.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9