[1]Liu Z Y, Loh N H, Khor K A, et al. Microstructure evolution during sintering of injection molded M2 high speed steel[J]. Materials Science and Engineering A, 2000, 293(1): 46-55.
[2]蔡红,叶俭,王志明,等. S390粉末高速钢真空气淬的显微组织及性能[J]. 金属热处理, 2010, 35(2): 67-69.
Cai H, Ye J, Wang Z M, et al. Microstructure and properties of powder metallurgy high speed steel S390 by vacuum gas quenching[J]. Heat Treatment of Metals, 2010, 35(2): 67-69.
[3]李响妹,叶俭,朱祖昌. 热处理工艺对S390粉末高速钢组织和性能的影响[J]. 机械工程材料, 2013, 37(12):42-45.
Li X M, Ye J, Zhu Z C. Effect of heat treatment on microstructure and properties of S390 powder metallurgy high speed steel[J]. Materials for Mechanical Engineering, 2013, 37(12):42-45.
[4]Godec M, B, Mandrino D, et al. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel[J]. Materials Characterization, 2010, 61(4): 452-458.
[5]Wieβner M, Leisch M, Emminger H, et al. Phase transformation study of a high speed steel powder by high temperature X-ray diffraction[J]. Materials Characterization, 2008, 59(7): 937-943.
[6]Mesquita R A, Barbosa C A. High-speed steels produced by conventional casting, spray forming and powder metallurgy[J]. Materials Science Forum, 2005, (498-499): 244-250.
[7]Peng H, Ling H, Li L, et al. Evolution of the microstructure and mechanical properties of powder metallurgical high-speed steel S390 after heat treatment[J]. Journal of Alloys and Compounds, 2018, 740(5): 766-773.
[8]He X, Yu Z, Lai X. Analysis of high temperature deformation behavior of a high Nb containing TiAl based alloy[J]. Materials Letters, 2008, 62(26): 4181-4183.
[9]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[10]Wu H, Wen S P, Huang H, et al. Hot deformation behavior and constitutive equation of a new type Al-Zn-Mg-Er-Zr alloy during isothermal compression[J]. Materials Science and Engineering A, 2016, 651: 415-424.
[11]Li H, Li Y, Wei D, et al. Constitutive equation to predict elevated temperature flow stress of V150 grade oil casing steel[J]. Materials Science and Engineering A, 2011, 530: 367-372.
[12]Lin Y C, Ding Y, Chen M, et al. A new phenomenological constitutive model for hot tensile deformation behaviors of a typical Al-Cu-Mg alloy[J]. Materials & Design, 2013, 52: 118-127.
[13]Mcqueen H J, Ryan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering A, 2002, 322(1): 43-63.
[14]Samantaray D, Mandal S, Bhaduri A K. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel[J]. Materials & Design, 2010, 31(2): 981-984.
[15]Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Science and Engineering A, 2009, 500(1): 114-121.
[16]Lin Y C, Chen M, Zhong J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J]. Computational Materials Science, 2008, 42(3): 470-477.
[17]郭彪, 葛昌纯, 徐轶,等. 喷射成形FGH95高温变形流变应力行为与预测[J]. 中国有色金属学报, 2012, 22(11):3029-3037.
Guo B, Ge C C, Xu Y, et al. Flow stress behavior and prediction of spray-forming FGH95 superalloy at elevated temperature[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(11): 3029-3037.
[18]Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions[J]. Metall.Rev., 1969, 14(1): 1-24.
[19]Sellars C M. The kinetics of softening processes during hot working of austenite[J]. Czechoslovak Journal of Physics B, 1985, 35(3): 239-248.
[20]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[21]Samantaray D, Mandal S, Bhaduri A K. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel[J]. Computational Materials Science, 2010, 47(2): 568-576.
[22]Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy[J]. Materials Science & Engineering A, 2012, 542(18): 79-87.
[23]Rezaei Ashtiani H R, Parsa M H, Bisadi H. Constitutive equations for elevated temperature flow behavior of commercial purity aluminum[J]. Materials Science and Engineering A, 2012, 545: 61-67.
|