网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
大气环境下1180 MPa级超高强钢延迟开裂寿命研究
英文标题:Research on delayed cracking life for 1180 MPa ultra-high strength steel in atmospheric environment
作者:万荣春 付立铭 王学双 
单位:渤海船舶职业学院 上海交通大学 中国第一汽车集团公司 
关键词:盐雾 大气环境 超高强钢 延迟开裂 拉应力 拉应变 
分类号:TG111.91
出版年,卷(期):页码:2021,46(1):164-169
摘要:

 通过对试验钢进行拉深成形模拟超高强钢实际应用时的应力、应变状态,研究了盐雾和大气环境下DP1180钢、MS1180钢和QP1180钢这3种1180 MPa级超高强汽车薄板钢拉深冲杯试样的延迟开裂寿命。试验结果表明:在盐雾条件下,DP1180钢的抗延迟开裂性能最好,QP1180钢的抗延迟开裂性能最差;但大气环境下,DP1180钢的抗延迟开裂性能最好,MS1180钢的抗延迟开裂性能最差,最易出现延迟开裂。在大气环境下,超高强钢在拉应力和拉应变与环境中氢的共同作用下易出现延迟开裂现象,并且首次发现冲杯试样在最大拉应力、最大拉应变的杯底外表面边缘处开裂。此外,在试验钢中存在岛状马氏体和块状铁素体组织,有利于降低其延迟开裂敏感性。

 The stress and strain state of ultra-high strength steel in practical application were simulated by deep-drawing with test steel, and the delayed cracking lifes for three kinds of ultra-high strength automotive sheet steels such as DP1180 steel, MS1180 steel and QP1180 steel in salt spray and atmospheric environments were studied respectively. The results show that in the salt spray condition, DP1180 steel has the best anti-delayed cracking performance, and QP1180 steel has the worst. However, in the atmospheric environment, DP1180 steel has the best anti-delayed cracking performance, and MS1180 steel has the worst, which is most prone to delayed cracking. Furthermore, in the atmospheric environment, ultra-high strength steel is easy to delay cracking under the combined action of tensile stress/tensile strain and environmental hydrogen, and for the first time, the cracking of deep-drawing cup sample cracking is found at the edge of outer surface in the cup bottom with the maximum tensile stress and the maximum tensile strain. In addition, the existence of island martensite and massive ferrite in the test steel is beneficial to reduce its delayed cracking sensitivity.

基金项目:
基金项目:2018年辽宁省自然科学基金指导计划项目(20180550659);2019年辽宁省教育厅科学研究经费项目(BHCYL201901);2019年辽宁省“百千万人才工程”人选科技活动资助项目
作者简介:
作者简介:万荣春(1981-),男,博士,副教授 E-mail:springs111@163.com
参考文献:

 [1]松山晋作. 遲れ破壤[M].束京: 日刊工業新闻社, 1989.


Matsuyama Shinsaku.Delayed Cracking[M]. Tokyo: Daily Industrial News Agency, 1989.

[2]樽井敏三, 山崎真吾. 高強度鋼の遲れ破壤評價方法と遲れ破壤克服技術[J]. ISIJ International, 2002, 88(10): 26-35.

Tarui Toshimi, Yamazaki Shingo. Evaluation method of delayed cracking of high strength steel and techniques to overcome delayed cracking[J]. ISIJ International, 2002, 88(10): 26-35.

[3]褚武扬. 氢损伤与滞后断裂[M]. 北京:冶金工业出版社, 2000.

Chu W Y. Hydrogen Damage and Delayed Fracture. [M]. Beijing: Metallurgical Industry Press, 2000.

[4]张永健. 超高强度薄板钢的氢致延迟断裂行为研究[D]. 北京:钢铁研究总院, 2013.

Zhang Y J. Study on Hydrogen Delayed Fracture Behaviour of Ultrahigh Strength Steel Sheets[D]. Beijing: Iron and Steel Research Institute, 2013.

[5]万荣春, 付立铭, 王学双. 1180 MPa级超高强钢慢速率拉伸延迟开裂性能[J]. 锻压技术, 2019, 44(3): 140-143.

Wan R C, Fu L M, Wang X S. Delayed fracture performance of 1180 MPa ultra highstrength steel by slow strain rate tension[J]. Forging & Stamping Technology, 2019, 44(3): 140-143.

[6]Tetsushi C, Yukito H, Eiji A, et al. Comparison of constant load, SSRT and CSRT methods for hydrogen embrittlement evaluation using round bar specimens of high strength steels [J]. ISIJ International, 2016, 56 (7): 1268-1275.

[7]Tetsushi C, Yukito H, Eiji A, et al. Comparison of hydrogen embrittlement resistance of high strength steel sheets evaluated by several methods [J]. ISIJ International, 2016, 56 (4): 685-692.

[8]GB/T 15825.3—2008,金属薄板成形性能与试验方法第3部分:拉深与拉深载荷试验[S].

GB/T 15825.3—2008, Sheet metal formability and test methods—Part 3: Drawing and drawing load test[S].

[9]万荣春, 付立铭, 王学双. 超高强双相钢冲杯盐雾延迟开裂性能的研究[J]. 热加工工艺, 2019, 48(20): 34-36,41.

Wan R C, Fu L M, Wang X S. Study on deep drawing delayed fracture of ultra highstrength dual phase steels by salt spray[J]. Hot Working Technology, 2019, 48(20): 34-36,41.

[10]叶又, 陈佳捷, 濮振谦, 等. 拉深成形对于Q&P980高强钢氢致延迟断裂影响的实验研究[J]. 精密成形工程, 2019, 11(2): 76-80.

Ye Y, Chen J J, Pu Z Q, et al. Effects of drawing on sensitivity of hydrogen induced delayed facture of Q&P980[J]. Journal of Netshape Forming Engineering, 2019, 11(2): 76-80.

[11]吴彦欣. TWIP钢的疲劳行为及延迟断裂研究[D]. 北京:北京科技大学, 2014.

Wu Y X. Research of Low Cycle Fatigue and Delayed Fracture Behavior of TWIP Steel[D]. Beijing: University of Science and Technology Beijing, 2014.

[12]万荣春, 付立铭, 王学双, 等. 1180 MPa级超高强度汽车薄板钢的延迟断裂性能[J]. 金属热处理, 2017, 42(1): 91-93.

Wan R C, Fu L M, Wang X S, et al. Delayed fracture property of 1180 MPa grade ultra highstrength steel sheet used for automotive[J]. Heat Treatment of Metals, 2017, 42(1): 91-93.

[13]Masataka Y, Yuki T, Shusaku T, et al. Influence of sheared edge on hydrogen embrittlement resistance in an ultrahigh strength steel sheet[J]. ISIJ International, 2014, 54(6): 1416-1425.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9