网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
6061铝合金环形锻件动态力学性能与失效行为
英文标题:Dynamic mechanical properties and failure behavior on 6061 aluminum alloy annular forgings
作者:于金程 陈玉平 许桂林 王骏 
单位:无锡职业技术学院 
关键词:6061铝合金 环形锻件 动态压缩 冲击 失效行为 
分类号:TG146.2+1
出版年,卷(期):页码:2021,46(1):179-185
摘要:

 为了研究6061铝合金环形锻件在冲击载荷下的动态力学性能和失效行为,在室温下分别采用分离式霍普金森压杆装置(SHPB)与冲击摆锤试验机测试其动态压缩力学性能与动态冲击力学性能,并利用金相显微镜(OM)、扫描电子显微镜(SEM)对冲击试样进行了组织和断口的显微分析。结果表明:6061铝合金环形锻件在室温、高应变率下具有正应变率强化效应,经过固溶处理、时效处理后,其动态压缩强度逐渐提高,在3300 s-1应变率下具有最大动态压缩强度,为365 MPa,而其塑性逐渐降低;室温下,6061铝合金环形锻件在固溶处理后具有相对优异的综合冲击性能,其最大冲击功为17.2 J,最大冲击韧性为215.1 kJ·m-2;锻后的冲击断裂为韧性断裂,固溶后的断裂为韧、脆混合断裂,时效后的断裂为脆性断裂。

 For studging the dynamic mechanical properties and failure behavior of 6061 aluminum alloy annular forgings under impact load, its dynamic compression mechanical properties and dynamic impact mechanical properties at room temperature were tested respectively by the split hopkinson pressure bar (SHPB) and pendulum impact testing machine, and the structure and fracture for specimens after impact were analyzed by optical microscope (OM) and scanning electron microscope (SEM). The results show that the 6061 aluminum alloy annular forgings have a positive strain rate strengthening effect at room temperature and high strain rate. After solution treatment and aging treatment, its dynamic compressive strength increases gradually with the maximum dynamic compressive strength of 365 MPa under the strain rate of 3300 s-1, while the ductility decreases gradually. At room temperature, after solution treatment, the 6061 aluminum ally annular forgings show relatively excellent comprehensive impact performance with the maximum impact power of 17.2 J and the maximum impact toughness of 215.1 kJ·m-2. The impact fracture after forging is ductile fracture, the fracture after solution is ductile and brittle mixed fracture, and the fracture after aging is brittle fracture. 

 
基金项目:
基金项目:江苏省产学研合作项目(BY2019043);江苏省高等学校自然科学研究面上项目(17KJD430006)
作者简介:
作者简介:于金程(1987-),男,博士,讲师 E-mail:yujincheng062@sina.com 通讯作者:陈玉平(1963-),男,学士,教授 E-mail:wxzy43206@163.com
参考文献:

 [1]王自启, 杨艳,张杰,等. 铝合金精密锻造技术研究及发展趋势[J]. 热加工工艺,2019,48(15):18-21.


Wang Z Q, Yang Y, Zhang J, et al. Research and development trend of precision forging technology for aluminum alloy[J]. Hot Working Technology, 2019,48(15): 18-21.

[2]汪建强, 郭丽丽,李永兵. 6016铝合金板材微观组织及力学性能的试验研究[J]. 锻压技术,2019,44(2):159-166.

Wang J Q, Guo L L, Li Y B. Experimental study on microstructure and mechanical properties of 6016 aluminum alloy sheet[J]. Forging & Stamping Technology, 2019, 44(2): 159-166.

[3]高永迪. 试论铝合金材料在未来汽车轻量化中的应用与发展[J]. 世界有色金属,2019,(21):174, 176.

Gao Y D. On the application and development of aluminum alloy materials in the future automotive lightweighting[J]. World Nonferrous Metals, 2019, (21):174, 176.

[4]王新太, 王进,顾宁,等. 渐进成形工艺参数对6061铝合金板材成形性能的影响[J]. 锻压技术,2019,44(7):29-33.

Wang X T, Wang J, Gu N, et al. Effect of incremental forming process parameters on formability of 6061 aluminum alloy sheet[J]. Forging & Stamping Technology, 2019, 44(7): 29-33.

[5]杨兴, 冯强,孙赞朋,等. 6061铝合金在多向锻造过程中显微组织与拉伸性能的演变[J]. 机械工程材料,2018,42(7):73-77.

Yang X, Feng Q, Sun Z P, et al. Evolution of microstructure and tensile properties of 6061 aluminum alloy during multidirectional forging[J]. Materials for Mechanical Engineering, 2018, 42(7): 73-77.

[6]李坤宏, 陈峥. 6061铝合金机械外壳的铸锻复合成形工艺研究[J]. 热加工工艺,2018,47(3):112-115.

Li K H, Chen Z. Research on castingforging compound forming process of 6061 aluminum alloy machine shell[J]. Hot Working Technology, 2018,47(3): 112-115.

[7]张侠, 钱进浩,龚小涛,等. 6061铝合金灯具散热底座芯轴挤压成形研究[J]. 锻压技术,2020,45(1):125-130.

Zhang X, Qian J H, Gong X T, et al. Research on extrusion forming of 6061 aluminum alloy spindle for lamp cooling holder[J]. Forging & Stamping Technology, 2020, 45(1): 125-130.

[8]田国富, 李文杰,李君基. 基于Dynaform的6061-T4P铝合金汽车机舱盖模面优化[J]. 锻压技术,2020,45(1):55-62.

Tian G F, Li W J, Li J J. Optimization on die face of engine compartment cover for 6016-T4P aluminum alloy based on Dynaform [J]. Forging & Stamping Technology, 2020, 45(1): 55-62.

[9]韩云, 刘维洲,张旭东,等. 固溶和时效处理对6061铝合金轮毂力学性能的影响[J]. 热加工工艺,2018,47(20):228-231,235.

Han Y, Liu W Z, Zhang X D, et al. Effects of solid solution and aging treatment on mechanical properties of 6061 aluminum alloy wheel hub[J]. Hot Working Technology, 2018,47(20):228-231,235.

[10]杨良会, 卢熠,吴永安,等. GH907环形锻件锻造工艺研究[J].锻造与冲压,2019,(23):60-63.

Yang L H, Lu Y, Wu Y A, et al. Research on forging process of GH907 annular forge piece[J]. Forging & Metalforming, 2019,(23):60-63.

[11]刘保亮, 王海鹏.大型铝基复合材料环形锻件等温精密模锻工艺研究[J] .锻造与冲压,2019,(15):18,20,28.

Liu B L, Wang H P. Research on isothermal precision die process of aluminum matrix composite large annular forge piece[J]. Forging & Metalforming, 2019,(15):18,20,28.

[12]吴赛燕, 杨辉. 6061铝合金锻压温度的智能控制研究[J]. 热加工工艺,2019,48(3):153-155.

Wu S Y, Yang H. Research on intelligent control of forging temperature of 6061 aluminum alloy[J]. Hot Working Technology, 2019,48(3):153-155.

[13]韦玉堂, 蔡建军. 车用6061铝合金三级轧制加工的力学性能及组织演变分析[J]. 锻压技术,2019,44(6):173-177.

Wei Y T, Cai J J. Analysis on mechanical properties and microstructure evolution of 6061 aluminum alloy for vehicles in threestage rolling process[J]. Forging & Stamping Technology, 2019, 44(6): 173-177.

[14]唐健江, 王嘉,刘嘉乐,等. 变形时效对6061铝合金板材的组织和力学性能的影响[J]. 锻压技术,2019,44(7):165-169.

Tang J J, Wang J, Liu J L, et al. Influence of deformation aging on microstructure and mechanical properties of 6061 aluminum alloy plate [J]. Forging & Stamping Technology, 2019, 44(7): 165-169.

[15]李晓琳, 魏峥. 固溶温度对6061铝合金微观组织和力学性能的影响研究[J]. 热加工工艺,2019,48(24):144-146,152.

Li X L, Wei Z. Effects of solution temperature on microstructure and mechanical properties of 6061 aluminum alloy[J]. Hot Working Technology, 2019,48(24): 144-146,152.

[16]李落星, 叶拓,郭鹏程,等. 挤压态6061铝合金动态力学性能及微观组织演变[J]. 中国材料进展,2016,35(4):268-274,260-261.

Li L X, Ye T, Guo P C, et al. The dynamic property and microstructure evolution of extruded 6061 aluminum alloy[J]. Materials China, 2016, 35(4): 268-274,260-261.

[17]雷经发, 许孟,刘涛,等. 高应变率下6061铝合金力学性能及本构模型研究[J]. 兵器材料科学与工程,2019,42(1):74-78.

Lei J F, Xu M, Liu T, et al. Mechanical properties and constitutive model of 6061 aluminum alloy at high strain rate[J]. Ordnance Material Science and Engineering, 2019, 42(1): 74-78.

[18]GB/T 34108—2017, 金属材料 高应变速率室温压缩试验方法[S].

GB/T 34108—2017, Metallic materials—High strain rate compression test method at ambient temperature [S].

[19]GB/T 12778—2008, 金属夏比冲击断口测定方法[S].

GB/T 12778—2008, Determination of Charpy impact fracture surface for metallic materials [S].

[20]刘文辉, 何圳涛,唐昌平,等.变形条件对2519A铝合金动态力学性能与组织演化的影响[J]. 材料工程,2016,44(1): 47-53.

Liu W H, He Z T, Tang C P, et al. Effect of deformation condition on dynamic mechanical properties and microstructure evolution of 2519A aluminum alloy[J]. Journal of Materials Engineering, 2016, 44(1): 47-53.

[21]Chen H N, Lu J B, Kong Y, et al. Atomic scale investigation of the crystal structure and interfaces of the B′ precipitate in AlMgSi alloys[J]. Acta Materialia, 2020,185: 193-203.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9