网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铸态Mn18Cr18N钢轧制热压缩实验分析
英文标题:Experimental analysis of rolling hot compression for ascast Mn18Cr18N steel
作者:刘洁 张志红 
单位:山西农业大学信息学院 
关键词:铸态Mn18Cr18N钢 热压缩 压下率 力学性能 组织 
分类号:TG335.8
出版年,卷(期):页码:2021,46(1):197-201
摘要:

 针对铸态Mn18Cr18N电渣重熔钢进行了单道次直接轧制,其压下率分别为10%,30%,40%和50%,并借助电子背散射仪(EBSD)观察了微观组织,结果表明,单道次轧制时,随着压下率的增大,组织逐渐细化。在晶界周围发生再结晶,变形孪晶增多,促进再结晶形核发生。组织细化主要由动态再结晶机制和孪生机制起主导作用。分析了轧后板的拉伸力学性能,随着压下率的增大,屈服强度由690.16 MPa增加至743.24 MPa,抗拉强度由885.65 MPa增加至940.31 MPa,断后伸长率由39.73%增加至53.46%,断口微观形貌特征逐渐由韧性和脆性的混合型断裂向韧窝状韧性断裂转变。断口边部的第二相含量较少,而试样中心微孔洞内含有大量方形的第二相,导致形成了微裂纹,断裂先从中心部开始。

 The as-cast Mn18Cr18N electroslag remelted steel was directly rolled in a single pass, and the reduction rates were 10%, 30%, 40% and 50%, respectively. The microstructure was observed by electron backscatter diffraction system (EBSD). The results show that the microstructure is gradually refined with the increasing of reduction rate in rolling with single pass. Recrystallization occurs around the grain boundary. The increasing of deformation twins promotes recrystallization nucleation. The structure refinement is dominated by the dynamic recrystallization mechanism and the twinning mechanism. The tensile mechanical properties of rolled sheet were analyzed. As the reduction rate increases, the yield strength increases from 690.16 MPa to 743.24 MPa, the tensile strength increases from 885.65 MPa to 940.31 MPa, and the elongation after fracture increases from 39.73% to 53.46%. The fracture morphology feature gradually changes from mixed fracture of toughness and brittleness to dimple toughness fracture. The content of the second phase at the edges of fracture is relatively small, while the microholes in the center of sample contain a large number of square second phases, and it causes the formation of microcracks, and the fracture starts from the center.

 
基金项目:
基金项目:面向新工科的《金属材料与热加工工艺》课程实践教学改革(晋教高[2018]6号)(J2018243)
作者简介:
作者简介:刘洁(1987-),女,硕士,讲师 E-mail:429842384@qq.com
参考文献:

 [1]Li H B, Jiang Z H, Feng H, et al. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickelfree austenitic stainless steel[J]. Materials & Design, 2015, 84:291-299.


[2]Wang Z H, Fu W T, Sun S H, et al. Effect of preheating temperature on surface cracking of high nitrogen CrMn austenitic stainless steel[J]. Journal of Materials Science & Technology, 2010, 26: 798-802.

[3]徐国富, 李晓源, 时捷. 热变形对高氮奥氏体不锈钢Mn18Cr18N组织和显微硬度的影响[J]. 特殊钢, 2013, 34(2):68-70.

Xu G F, Li X Y, Shi J. Effect of thermal deformation on microhardness and structure of high nitrogen austenite stainless steel Mn18Cr18N[J]. Special Steel, 2013, 34(2):68-70.

[4]Wang Z, Meng Q, Qu M, et al. Effect of strain rate on hot ductility behavior of a high nitrogen CrMn austenitic steel[J]. Metallurgical and Materials Transactions A, 2016, 47(3):1-12.

[5]Sun S,Wang B,Shi Z, et al. Effect of grain size on dynamic recrystallization and hotductility behaviors in highnitrogen crmn austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2014, 45(8):3631-3639.

[6]Qin F,Zhu H,Wang Z, et al. Dislocation and twinning mechanisms for dynamic recrystallization of ascast Mn18Cr18N steel[J]. Materials Science & Engineering A, 2017, 684: 634-644.

[7]Azarbarmas M, AghaieKhafri M, Cabrera J M, et al. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J]. Materials Science & Engineering A, 2016, 678:137-152.

[8]韩宝军. 奥氏体动态再结晶晶粒超细化及其马氏体相变研究[D]. 上海:上海交通大学,2008.

Han B J. Research on the Grain Ultrarefinement in Austenite by Dynamic Recrystallization and Its Martensitic Transformation[D].Shanghai: Shanghai Jiao Tong University, 2008.

[9]李飞, 张华煜,何文武,等. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为[J]. 金属学报,2016, 52(8):956-964.

Li F, Zhang H Y, He W W, et al. Compression and tensile consecutive deformation behavior of Mn18Cr18N austenite stainless steel[J]. Acta Metallurgica Sinica,2016, 52(8):956-964.

[10]Davisedal J. Metals Handbook, v.12: Fractography[M]. American: American Society for Metals, 1987.

[11]张荣华. 护环用改进型超高氮奥氏体钢的铸态组织及热变形行为[D]. 秦皇岛:燕山大学, 2015.

Zhang R H. Ascast Microstructure and Hot Deformation Behaviors of Modified Ultra High Nitrogen Austenitic Steel for Retaining Rings[D]. Qinhuangdao: Yanshan University, 2015.

[12]Shao C W, Shi F, Guo W W. Plastic deformation and damage behaviors of Fe18Cr18Mn0.63N highnitrogen austenitic steel under uniaxial tension and compression[J]. Materials Transactions, 2015, 56(1):46-53.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9