摘要:
|
为了提高车辆A柱加强板的热冲压质量,提出了响应面法与NSGA-II算法相结合的工艺多目标优化方法。以最小化冲压件的最大减薄率和最大增厚率为优化目标,选择板料初始温度、摩擦系数、上下模压料力等作为优化参数,使用Box-Behnken方法设计了4因素3水平实验,依据Autoform有限元软件得到了实验仿真结果。基于二阶响应面法,拟合质量参数-工艺参数之间的非线性关系,经决定系数法检验,响应面法的拟合精度较高。通过基因编码将优化问题转化为寻优问题,使用NSGA-II算法搜索到多目标优化的Pareto前沿解。选择Pareto解集中的一个优化方案:初始温度为947.25 ℃、摩擦系数为0.429、上模压料力为3.06 MPa、下模压料力为1.05 MPa。经仿真和实验验证,优化后冲压件的最大减薄率均值减小了6.79%,最大增厚率均值减小了8.47%,说明优化后冲压件质量明显提高。另外,优化后冲压件的标准差略有下降,说明优化后冲压件质量的一致性略有提高。
|
In order to improve the hot stamping quantity of vehicle A-pillar reinforced plate, the multi-object process optimization method was proposed by combining response surface method and NSGA-II algorithm, and taking the maximum thinning rate and the maximum thickening rate as the optimizing goals, the initial temperature of plate, the friction coefficient, the pressing forces of upper and lower dies etc. were selected as the optimizing parameters. Then, four-factor and three-level test was designed by Box-Behnken method, and the experimental simulation results were obtained by finite element software Autoform. Based on the second order response surface method, the nonlinear relationship between quality parameters and process parameters was fit, and the fitting accuracy of the response surface method was very high by the test of determination coefficient method. Furthermore, the optimization problem of parameters were transformed into the searching optimization problem by genetic coding, and Pareto frontier solutions of multi-object optimization were solved by NSGA-II algorithm. Taking one optimal scheme in Pareto solution set, the initial temperature is 947.25 ℃, the friction coefficient is 0.429, the pressing force of upper die is 3.06 MPa, and the pressing force of lower die is 1.05 MPa. The simulation and experiment verification show that after optimization the mean value of the maximum thinning rate for stamping part decreases by 6.79%, and the mean value of the maximum thickening rate decreases by 8.47%, which indicates that the quality of stamping part is improved obviously. Besides, the standard deviation of stamping part after optimization drops a bit, and it means that the quality consistency of stamping part improves a bit after optimization.
|
基金项目:
|
教育部科技发展中心高校产学研创新基金(2018 A06035);广安市2019年市级科技创新重点基础研究项目(项目序号:20);2020年度广安市市级指导性科技计划项目(项目序号:01)
|
作者简介:
|
李有通(1986-),男,学士,讲师,E-mail:859135985@qq.com
|
参考文献:
|
[1]龙岩,蒋凌山,刘雪强,等. 某轿车车门轻量化与疲劳寿命多目标综合优化[J].中南大学学报: 自然科学版, 2019, 50(11): 2732-2742. Long Y, Jiang L S, Liu X Q, et al. Multi-objective optimization of lightweight and fatigue life for car door [J]. Journal of Central South University: Science and Technology, 2019, 50 (11): 2732-2742. [2]马治军,陈伟业,唐鼎,等. 汽车B柱零件热冲压软区模具模面优化设计 [J].锻压技术,2019,44(4):138-144. Ma Z J, Chen W Y, Tang D, et al. Optimization on die surface design of soft zone in hot stamping process for automobile B-pillar part [J]. Forging & Stamping Technology, 2019, 44(4):138-144. [3]谢延敏,唐维,黄仁勇,等. 基于SA-RBF神经网络的冲压成形拉延筋优化[J].西南交通大学学报,2017,52(5):970-976. Xie Y M, Tang W, Huang R Y, et al. Drawbead optimisation in stamping using SA-RBF neural networks [J]. Journal of Southwest Jiaotong University, 2017, 52(5):970-976. [4]王辉,刘莉滋,王海宝,等. 基于数值模拟的汽车冲压模具轻量化研究 [J].锻压技术,2019,44(5):116-120. Wang H,Liu L Z,Wang H B,et al. Research on lightweight of automobile stamping die based on numerical simulation [J].Forging & Stamping Technology,2019,44(5):116-120. [5]莫明立.某汽车后地板横梁冲压成形数值模拟及参数优化[J].锻压技术, 2019,44(6):41-45. Mo M L. Numerical simulation and parameters optimization on stamping for rear floor beam of an automobile [J]. Forging & Stamping Technology, 2019,44(6):41-45. [6]刘建鹏,王震虎,林启权,等.基于正交试验的铝代钢冲压成形工艺参数优化[J].塑性工程学报,2018,25(5):110-116. Liu J P, Wang Z H, Lin Q Q, et al. Optimization of stamping process parameters for aluminum instead of steel based on orthogonal experiment [J]. Journal of Plasticity Engineering, 2018, 25(5):110-116. [7]何泽歆,黄超群. 基于克里金模型和智能算法的汽车加强件热冲压工艺优化 [J]. 锻压技术,2020,45(10):47-52. He Z X,Huang C Q. Optimization of hot stamping process for automobile reinforcement part based on Kriging model and intelligent algorithm [J]. Forging & Stamping Technology,2020,45(10):47-52. [8]Naderi M, Durrenberger L, Molonari A, et al. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures [J]. Materials Science & Engineering A,2008, 478(1): 130-139. [9]张辉,潘爱琼,李世云. 热冲压工艺参数对B400VK钢U型件相变组织影响的模拟分析[J].金属热处理, 2019, 44(12): 248-251. Zhang H, Pan A Q, Li S Y. Simulation analysis of the effect of hot stamping process parameters on transformation microstructure of U-shaped B400VK steel part [J]. Heat Treatment of Metals, 2019, 44(12): 248-251. [10]薛珂,李文风,常庆伟,等. 基于Box-Behnken响应曲面法优化Fenton氧化处理柿竹园多金属选矿废水[J]. 矿冶工程, 2020, 40(1):41-45. Xue K, Li W F, Chang Q W, et al. Optimization of Fenton reaction for treating beneficiation wastewater from Shizhuyuan polymetallic concentrator with response surface methodology based on a Box-Behnken design [J]. Mining and Metallurgical Engineering, 2020, 40(1):41-45. [11]唐林,许志沛,贺田龙,等. 基于响应面法的多节伸缩臂设计优化[J]. 机械设计与制造, 2020, (2):83-86. Tang L, Xu Z P, He T L, et al. Optimization design of telescopic booms based on respond surface method [J]. Machinery Design & Manufacture, 2020, (2):83-86. [12]刘鑫平,顾春华,罗飞,等. 基于败者组与混合编码策略的NSGA-II改进算法[J]. 计算机科学,2019,46(10): 222-228. Liu X P, Gu C H, Luo F, et al. Improved NSGA-II algorithm based on loser group and hybrid coding strategy [J]. Computer Science, 2019,46(10): 222-228. [13]Camara M V O, Ribeiro G M, Tosta M D C R. A Pareto optimal study for the multi-objective oil platform location problem with NSGA-II[J]. Journal of Petroleum Science & Engineering, 2018, 169:258-268. [14]张萍萍,郑飂默,王诗宇. 基于改进的NSGA-II的多目标鲁棒性设备布局研究[J].组合机床与自动化加工技术, 2018, (12): 125-128. Zhang P P, Zheng L M, Wang S Y. A research of multi-objective robust facility layout based on improved NSGA-II[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018, (12): 125-128.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|