网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
工艺参数对动态流量控制法挤压弯管应力的影响
英文标题:Influence of process parameters on stress in extrusion bending tube by dynamic flow control method
作者:张立红 肖晓萍 李飞 崔开放 
单位:西南科技大学 
关键词:弯管件 热挤压 平均压应力 曲率半径 动态流量控制法 
分类号:TG379
出版年,卷(期):页码:2021,46(2):136-141
摘要:
采用有限元模拟和实验研究了挤压钛合金弯曲管件。通过实验验证了工件的形状和尺寸精度,并通过有限元模拟分析了工艺参数对挤出过程中变形体的平均压应力分布情况和挤出弯管件的曲率半径的影响规律。结果表明:有限元模拟中,弯管件的曲率半径误差为6.03%,弯管直径误差为3.82%;在靠近定径带处,平均压应力呈非均匀分布;在焊合腔内,靠近细分流孔区域的平均压应力小于靠近粗分流孔区域的平均压应力,平均压应力的大小顺序在通过粗、细分流孔前后相反;在模具结构固定不变时,弯管件的曲率半径随挤压速度的减小而增大,不随挤压温度的变化而变化。
The extrusion bending tube of titanium alloy was studied by finite element simulation and experiment. Then, the shape and dimensional precision of workpiece were verified by experiments, and the influence laws of process parameters on the average compressive stress distribution of deformed body during the extrusion process and the curvature radius of extruded bending tube were analyzed by finite element simulation. The results show that in the finite element simulation, the errors of curvature radius and diameter for bending tube are 6.03% and 3.82%, respectively. Near bearing zone, the average compressive stress is non-uniformly distributed. However, in the welding cavity, the average compressive stress near the subdivided orifice area is smaller than that near the coarse orifice area, and the order of average compressive stress is reversed before and after passing through the subdivided and coarse orifices. In addition, when the mold structure is fixed, the curvature radius of bending tube increases with the decreasing of extrusion speed and does not change with the change of extrusion temperature.
基金项目:
四川省科技厅应用基础研究项目基金(19ZS2144);西南科技大学博士基金(17zx7154)
作者简介:
张立红(1972-),女,硕士,副教授,E-mail:zhanglihong_swust@163.com
参考文献:
[1]Yang H, Li H, Zhang Z Y, et al. Advances and trends on tube bending forming technologies[J]. Chinese Journal of Aeronautics, 2012, 25(1):1-12.
[2]Watkins R T, Reedlunn B, Daly S, et al. Uniaxial, pure bending, and column buckling experiments on superplastic NiTi rods and tubes[J]. International Journal of Solids and Structures, 2018, 146:1-28.
[3]尤洋.大口径管材弯曲成形技术仿真研究[D]. 长春:吉林大学, 2017.
You Y. Simulation Study on Bending Forming Technology of Large Diameter Pipe[D]. Changchun: Jilin University, 2017.
[4]Enrico S, Giukua V, Andrea G, et al. Modelling of hot rotary draw bending for thin-walled titanium alloy tubes[J]. International Journal of Mechanical Sciences, 2018, 148:698-706.
[5]Zhu Y X, Liu Y L, Yang H, et al. Improvement of the accuracy and the computational efficiency of the springback prediction model for the rotary-draw bending of rectangular H96 tube[J]. International Journal of Mechanical Sciences, 2013, 66:224-232.
[6]Suga K, Kikuchi M, Wada Y, et al. Study on fatigue growth of multi-surface flaws in shaft under rotary bending by S-FEM[J]. Engineering Fracture Mechanics, 2017, 174:207-214.
[7]Xue X, Liao J, Vincze G, et al. Modelling of mandrel rotary draw bending for accurate twist springback prediction of an asymmetric thin-walled tube[J]. Journal of Materials Processing Technology, 2015, 216:405-417.
[8]石磊, 徐国辉, 任畅, 等. 动态流量控制法挤出镁合金三维弯曲管件[J]. 材料科学与工艺, 2016, 24(6):9-14.
Shi L, Xu G H, Ren C, et al. Dynamic flow control extrusion of magnesium alloy of three dimensional bending tube[J].Materials Science and Technology, 2016, 24(6):9-14.
[9]石磊, 文九巴, 姚怀, 等. 钛合金弯管动态流量控制法挤压成形的模拟与实验研究[J]. 中国有色金属学报, 2019, 29(2): 380-387.
Shi L, Wen J B, Yao H, et al. Numerical simulation and experimental study of titanium alloy bending tube extruded by dynamic flow control technique[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(2): 380-387.
[10]石磊, 金文中, 李豪, 等. 流量控制式一次成型多维度弯管件用的模具及其使用方法[P]. 中国: ZL201610999851.0,2018-01-02.
Shi L, Jin W Z, Li H, et al. Mould and its usage for flow-controlled one-time forming of multi-dimensional elbow fittings[P]. China: ZL201610999851.0,2018-01-02.
[11]黄东男, 李有来, 左壮壮, 等. 异形管材分流模挤压焊合过程金属流变及模具受力的模拟分析[J]. 材料科学与工艺, 2015, 23(2):25-32.
Huang D N, Li Y L, Zuo Z Z, et al. Simulation analysis of metal flowing behaviors and die stress distributions during porthole extrusion of a special pipe[J]. Materials Science and Technology, 2015, 23(2):25-32.
[12]石磊. 铝合金等通道转角分流大宽展挤压成形机理研究[D]. 西安:西北工业大学, 2015.
Shi L. Investigation on Deformation Mechanism of Aluminum Alloy during Porthole ECAP Spread Extrusion[D]. Xian:Northwestern Polytechnical University, 2015.
[13]Li H, Yang H, Zhang Z Y, et al. ‘Size effect’ related bending formability of thin-walled aluminum alloy tube[J]. Chinese Journal of Aeronautics, 2013, 26(1): 230-241.
[14]Tian S, Liu Y L, Yang H. Effects of geometrical parameters on wrinkling of thin-walled rectangular aluminum alloy wave-guide tubes in rotary-draw bending[J]. Chinese Journal of Aeronautics, 2013, 26(1): 242-248.
[15]Liao J, Xue X, Barlat F, et al. Material modelling and springback analysis for multi-stage rotary draw bending of thin-walled tube using homogeneous anisotropic hardening model[J]. Procedia Engineering, 2014, 81:1228-1233.
[16]Tao Z J, Yang H, Li H, et al. Coupled thermo-mechanical FE simulation of unloading cooling springback in NC heating bending of large diameter thin-walled commercial pure titanium tube[J]. Procedia Engineering, 2014, 81:2273-2279.
[17]Zhu Y X, Liu Y L, Yang H, et al. Improvement of the accuracy and the computational efficiency of the springback prediction model for the rotary-draw bending of rectangular H96 tube[J]. International Journal of Mechanical Sciences, 2013, 66:224-232.
[18]E D X, Liu Y. Springback and time-dependent springback of 1Cr18Ni9Ti stainless steel tubes under bending[J]. Materials & Design, 2010, 31(3):1256-1261.
[19]Wu C, Yang H, Li H W. Simulated and experimental investigation on discontinuous dynamic recrystallization of a near-α TA15 titanium alloy during isothermal hot compression in β single-phase field[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(6):1819-1829.
[20]石磊, 文九巴, 王黎, 等. 工艺参数对挤压铜铝复合板静水压力的影响[J]. 热加工工艺, 2019, 48(3): 145-148,152.
Shi L, Wen J B, Wang L, et al. Effect of process parameters on hydrostatic pressure of Cu/Al composite sheet during extrusion[J]. Hot Working Technology, 2019, 48(3): 145-148,152.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9