网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
镁基汽车电池合金的锻造工艺及组织性能
英文标题:Forging process and microstructure properties of Mg-based automotive battery alloy
作者:李振兴 王学军 
单位:1.天津职业大学 汽车工程学院 2.山东华宇工学院 汽车工程学院 
关键词:Mg1.8Al0.2Ni镁基电池合金 多向等温锻造工艺 锻造温度 耐腐蚀性能 充放电循环稳定性 
分类号:TG376.9
出版年,卷(期):页码:2021,46(3):15-20
摘要:

 采用不同温度进行了Mg1.8Al0.2Ni镁基电池合金的多向等温锻造工艺试验,并与锻造前的合金进行了显微组织、耐腐蚀性能和充放电循环稳定性的对比分析。结果表明:多向等温锻造工艺明显细化了合金晶粒,显著提高了合金的耐腐蚀性能和充放电循环稳定性;随着锻造温度从350 ℃增至450 ℃Mg1.8Al0.2Ni镁基电池合金的内部组织先细化、后粗化,合金的耐腐蚀性能和充放电循环稳定性均先提高、后下降;与锻造前的合金相比,经350 ℃多向等温锻造后,Mg1.8Al0.2Ni镁基电池合金的腐蚀电位正移了32 mV,充放电循环20 次后放电容量保持率增大了21%,合金的耐腐蚀性能和充放电循环稳定性均得到了显著提高。

 The multi-directional isothermal forging process tests of Mg1.8Al0.2Ni Mg-based battery alloy were carried out at different temperatures, and the microstructure, corrosion resistance property and charge-discharge cycle stability were compared and analyzed with the alloy before forging. The results show that the multi-directional isothermal forging significantly refines the grains of  alloy and improves the corrosion resistance property and charge-discharge cycle stability of alloy. With the increasing of forging temperature from 350 ℃ to 450 ℃, the internal microstructure of Mg1.8Al0.2Ni Mg-based battery alloy is first refined and then coarsened, and the corrosion resistance property and the charge-discharge cycle stability of alloy are first increased and then decreased. Compared with the alloy before forging, the corrosion potential of Mg1.8Al0.2Ni Mg-based battery alloy after multi-directional isothermal forging at 350 ℃ is positively shifted by 32 mV, the retention rate of discharge capacity increases by 21% after twenty charge-discharge cycles, and the corrosion resistance property and the charge-discharge cycle stability of alloy are significantly improved.

 

基金项目:
天津市科学技术委员会科研课题(18JCTPJC58500)
作者简介:
李振兴(1988-),男,硕士,讲师 E-mail:li_zhenxing_love@126.com
参考文献:

 [1]孙欣,阚洪敏,魏晓冬, .镁基储氢合金制备技术的研究进展[J].化工新型材料,2019,47(11):232-235,240.


 


Sun X, Que H M, Wei X D, et al.Research progress in preparation of magnesium-based hydrogen storage alloy[J].New Chemical Materials,2019,47(11):232-235,240.


 


[2]吴敏,黎聪.汽车电池负极镁基合金Mg-Ni-Y-Gd的组织与性能[J].电镀与精饰,2020,42(2):11-14.


 


Wu M, Li C.Microstructure and properties of Mg-based alloy Mg-Ni-Y-Gd for automotive battery anode[J].Plating & Finishing,2020,42(2):11-14.


 


[3]李海斌,姬鹏.机械合金化Mg-Ni-Cr-Ti镁基电池合金的组织与性能研究[J].轻合金加工技术,2019,47(7):68-71.


 


Li H B, Ji P.Microstructure and properties of mechanical alloying Mg-Ni-Cr-Ti Mg-based battery alloys[J].Light Alloy Fabrication Technology,2019,47(7):68-71.


 


[4]李海斌,郄彦辉.新型稀土镁合金汽车电池的铸造工艺及性能研究[J].特种铸造及有色合金,2019,39(5):487-489.


 


Li H B, Hao Y H.Casting process and properties of new rare earth alloys for automotive batteries[J].Special Casting & Nonferrous Alloys,2019,39(5):487-489.


 


[5]吴正乾,程艳.新能源汽车电池用新型镁基储氢合金的组织与性能[J].热加工工艺,2016,45(16):45-47.


 


Wu Z Q, Cheng Y.Microstructure and properties of new type of magnesium based hydrogen storage alloy for new energy automobile battery[J].Hot Working Technology,2016,45(16):45-47.


 


[6]苑慧萍,蒋利军.不同碱溶液表面处理对稀土镁镍基储氢合金的影响[J].无机化学学报,2018,34(12):2271-2279.


 


Yuan H P, Jiang L J.Effect of surface treatment with different alkaline solutions on rare earth-magnesium-nickel based hydrogen storage alloy[J].Chinese Journal of Inorganic Chemistry,2018,34(12):2271-2279.


 


[7]姜婉婷,罗永春,赵磊, .稀土元素对R-Y-NiA2B7型无镁储氢合金微观结构和电化学性能的影响[J].无机化学学报,2018,34(10):1817-1825.


 


Jiang W T, Luo Y C, Zhao L, et al.Effect of rare earth elements on the microstructure and electrochemical properties of Mg-free R-Y-Ni based A2B7-type hydrogen storage alloys[J].Chinese Journal of Inorganic Chemistry,2018,34(10):1817-1825.


 


[8]史云斌,黄瑞.混合动力汽车用镁基储氢合金制备与性能研究[J].铸造技术,2018,39(2):302-305.


 


Shi Y B, Huang R.Preparation and properties of Mg-based hydrogen storage alloys for hybrid electric vehicle[J].Foundry Technology,2018,39(2):302-305.


 


[9]宋飞,罗丹.混合动力车电池用镁基储氢合金的制备及性能[J].金属热处理,2017,42(12):90-94.


 


Song F, Luo D.Preparation of Mg based hydrogen storage alloy for hybrid car battery and its properties[J].Heat Treatment of Metals,2017,42(12):90-94.


 


[10]郝孟军,宫涛,代艳霞.汽车轮毂用改性镁合金锻造工艺[J].锻压技术,2019,44(4):22-27.


 


Hao M J, Gong T, Dai Y X.Modified magnesium alloy forging process for automobile hub[J].Forging & Stamping Technology,2019,44(4):22-27.


 


[11]郭强,严红革,陈振华, .AZ80镁合金多向锻造变形过程中晶粒取向的演变[J].金属学报,2007,43(6):619-624.


 


Guo Q, Yan H G, Chen Z H, et al.Evolution of the grain orientation of AZ80 magnesium alloy during multiple forging process[J].Acta Metallurgica Sinica,2007,43(6):619-624.


 


[12]姜俊,李慧中,欧阳杰, .多向锻造AZ80A镁合金的静态再结晶行为[J].中国有色金属学报,2014,(9):2205-2212.


 


Jiang J, Li H Z, Ouyang J, et al.Static recrystallization behavior of multi-directional forged AZ80A magnesium alloy[J].The Chinese Journal of Nonferrous Metals,2014,(9):2205-2212.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9