网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于感应加热的镁合金带内筋筒形件热强旋旋前温度场研究
英文标题:Study on temperature field before hot power spinning for magnesium alloy cylindrical part with inner ribs based on induction heating
作者:江鹏 夏琴香 龙锦川 肖刚锋 
单位:华南理工大学 机械与汽车工程学院 
关键词:ZK61镁合金 带内筋筒形件 热强旋 感应加热 温度场 
分类号:TG306;TH161.2
出版年,卷(期):页码:2021,46(3):111-117
摘要:

 对于镁合金带内筋筒形件的热强旋成形,旋前管坯的温度场分布对成形过程中的材料流动及旋压件的成形质量具有重要影响。基于多物理场耦合软件COMSOL,建立了ZK61镁合金带内筋筒形件热强旋旋前管坯电磁感应加热模型,模拟分析了不同感应加热参数条件下管坯温度场的分布情况,并通过实验验证了模型的可靠性。研究结果表明:相比电流强度,电流频率对管坯表心温差的影响更为显著,随着电流频率及电流强度的增加,管坯表心温差均逐渐增大;感应线圈的匝数及线圈与管坯的间距对管坯表心温差的影响较大,随着线圈匝数的增大,管坯表心温差近似呈指数形式增加,线圈与管坯的间距越大,管坯表心温差越小。

 For the hot power spinning of magnesium alloy cylindrical part with inner ribs, the temperature field distribution of cylindrical blank before spinning has an important influence on the material flow and forming quality of spinning part in the forming process. Therefore, the electromagnetic induction heating model of cylindrical blank before hot power spinning of ZK61 magnesium alloy cylindrical part with inner ribs was established by the multi-physics coupling software COMSOL, the temperature field distribution conditions of cylindrical blank under different induction heating parameters were simulated and analyzed, and the reliability of model was verified by experiment. The results show that compared with the current intensity, the current frequency has a more significant influence on the temperature difference between the surface and core of cylindrical blank, and with the increasing of current frequency and current intensity, the temperature difference between the surface and core of cylindrical blank gradually increases. Furthermore, the induction coil turns and the distance between coil and cylindrical blank both have significant influences on the temperature difference between the surface and core of cylindrical blank. As the number of coil turns increases, the temperature difference between the surface and core of cylindrical blank increases exponentially, and the larger the distance between coil and cylindrical blank is, the smaller the temperature difference between the surface and core of cylindrical blank is.

基金项目:
国家自然科学基金资助项目(51775194)
作者简介:
江鹏(1995-),男,硕士研究生 E-mail: 1115818376@qq.com 通讯作者:夏琴香(1964-),女,博士,教授 E-mail:meqxxia@scut.edu.cn
参考文献:

 [1]Long J C, Xia Q X, Xiao G F, et al. Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps[J]. International Journal of Mechanical Sciences, 20211912: 106069.


 


[2]Yuan S, Xia Q X, Long J C, et al. Study of the microstructures and mechanical properties of ZK61 magnesium alloy cylindrical parts with inner ribs formed by hot power spinning[J]. The International Journal of Advanced Manufacturing Technology,2020, 111(3): 851-860.


 


[3]Zhang L X, Chen W Z, Zhang W C, et al. Microstructure and mechanical properties of thin ZK61 magnesium alloy sheets by extrusion and multi-pass rolling with lowered temperature[J].Journal of Materials Processing Technology, 2016, 237(11): 65-74.


 


[4]Xiao G F, Zhu N Y, Long J C, et al. Research on precise control of microstructure and mechanical properties of Ni-based superalloy cylindrical parts during hot backward flow spinning[J]. Journal of Manufacturing Processes, 2018, 345: 140-147.


 


[5]Cao Z, Wang F H, Wan Q, et al. Microstructure and mechanical properties of AZ80 magnesium alloy blank fabricated by hot flow forming[J]. Materials & Design,2015,672:64-71.


 


[6]Murata M, Kuboki T, Murai T. Compression spinning of circular magnesium tube using heated roller tool [J]. Journal of Materials Processing Technology, 2005,162-163:540-545.


 


[7]周祥. 挤压态ME20M镁合金高温变形行为与热旋工艺研究[D]. 哈尔滨工业大学,2014.


 


Zhou X. Study on High-temperature Deformation Behavior and Thermal Spinning of Extrued ME20M Alloy[D]. HarbinHarbin Institute of Technology,2014.


 


[8]Xia Q X, Long J C, Zhu N Y, et al. Research on the microstructure evolution of Ni-based superalloy cylindrical parts during hot power spinning[J]. Advances in Manufacturing, 2019,7(1):52-63.


 


[9]Yang H, Huang L, Zhan M. Coupled thermo-mechanical FE simulation of the hot splitting spinning process of magnesium alloy AZ31[J]. Computational Materials Science,2010,47(3): 857-866.


 


[10]夏琴香, 袁帅, 程秀全, . 镁合金热旋压成形技术研究现状[J].锻压技术, 2018,43(7):103-111.


 


Xia Q X, Yuan S, Cheng X Q, et al. Research status of hot spinning for magnesium alloy[J]. Forging & Stamping Technology, 2018,43(7):103-111.


 


[11]黄高柱.镁合金带内筋筒形件热强旋成形工艺及质量研究[D]. 广州:华南理工大学,2019.


 


Huang G Z. Research on Hot Power Spinning Forming Process and Quality of Magnesium Alloy Cylindrical Part with Inner Ribs[D]. Guangzhou: South China University of Technology,2019.


 


[12]张美龙.坯料端部感应加热磁场/温度场特性分析[D].杭州:浙江工业大学,2020.


 


Zhang M L. Analysis of Inductive Heating Magnetic/Temperature Field Characteristics at the End of Billet[D]. Hangzhou: Zhejiang University of Technology2020.


 


[13]魏振兴,张秀玉,石润波,.感应加热计算及节能[J].电气开关,1998, 4(2):3-5.


 


Wei Z X, Zhang X Y, Shi R B, et al. Induction heating calculation and energy saving[J]. Electrical Switch, 19984(2):3-5.


 


[14]余成波,张林,曾亮.三维无线电能传输线圈磁场的仿真分析[J].电气技术,2018,19(8):204-209.


 


Yu C B, Zhang L, Zeng L. Simulation analysis of magnetic field of three-dimensional wireless power transmission coil[J]. Electrical Technology, 2018, 19(8): 204-209.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9